Contents

1. Introduction 1
  1.1 Soft Matter 1
  1.2 Liquid Crystals 2
    1.2.1 Nematic liquid crystals 2
    1.2.2 Smectic liquid crystals 3
    1.2.3 Cholesteric liquid crystals 4
    1.2.4 Discotic liquid crystals 5
    1.2.5 Banana liquid crystals 5
    1.2.6 Biaxial Nematic and Smectic liquid crystals 5
  1.3 Gels 6
    1.3.1 Organogels 7
    1.3.2 Liquid crystals gels 8
  1.4 Rheology 10
    1.4.1 Rheometer 12
    1.4.2 Rheological Measurements 13
  1.5 Physical Properties of nematic liquid crystals 17
    1.5.1 Surface alignment 17
    1.5.2 X-Ray diffraction (XRD) 19
    1.5.3 Flow properties 19
    1.5.4 Birefringence 20
    1.5.5 Dielectric anisotropy 20
    1.5.6 Diamagnetic anisotropy 21
  1.6 Experimental Techniques 21
    1.6.1 Test tube inversion 21
    1.6.2 Polarising optical microscopy (POM) 22
    1.6.3 Differential scanning calorimetry (DSC) 23
    1.6.4 Field emission scanning electron microscopy (SEM) 23
    1.6.5 X-Ray diffraction measurements 23
    1.6.6 Rheometry set - up 24
  1.7 Scope of this thesis 25
  1.8 List of Publications 29
  1.9 References 30

2. Soft Glass Rheology in Liquid Crystalline Gels formed by a Monodisperse Dipeptide 35
   Overview 35
   2.1 Introduction 36
   2.2 Experimental details 37
     2.2.1 Preparation of gel composites 38
     2.2.2 Experimental techniques 38
5. Enhanced Frank Elasticity and Storage Modulus in a Diamagnetic Liquid Crystalline Ferrogel

Overview

5.1 Introduction

5.2 Experimental details
   5.2.1 Synthesis of FePt nanoparticles
   5.2.2 Experimental techniques
   5.2.3 Characterisation of FePt nanoparticles
   5.2.4 Preparation of ferrofluid and ferrogel

5.3 Results and discussion
   5.3.1 Visual observation of gel formation
   5.3.2 Differential scanning calorimetry
   5.3.3 Polarising optical microscopy
   5.3.4 X-Ray diffraction measurements
   5.3.5 Dielectric measurements
   5.3.6 Frank elastic constants
   5.3.7 Rheological characterisation
   5.3.8 Correlation between $G'$ and $K_3/K_1$
   5.3.9 Magnetic measurements
   5.3.10 Structure of the gel

5.4 Conclusion

5.5 References

6. A Charge Transfer Complex Nematic Liquid Crystalline Gel with High Anisotropic Electrical Conductivity

Overview

6.1 Introduction

6.2 Experimental details
   6.2.1 Preparation of gel composites
   6.2.2 Experimental techniques

6.3 Results and discussion
   6.3.1 Polarising optical microscopy
   6.3.2 UV-Visible Spectroscopy- Absorbance measurements
   6.3.3 Rheological characterisation
   6.3.4 Electrically induced Freedericksz transformation
   6.3.5 X-Ray diffraction measurements
   6.3.6 Electrical conductivity
   6.3.7 Molecular packing