Bibliography

Aviram, M., Billecke, S., Sorenson, R., Bisgaier, C., Newton, R., Rosenblat, M., Erogul, J., Hsu, C., Dunlop, C. and La Du, B. 1998. Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities:

Bibliography

Bibliography

123

• Hokanson, J. E. and Austin M. A. 1996. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol

• Meenakshisundaram, R., Rajendiran, C. and Thirumalaikolundusubramanian, P. 2010. Lipid and lipoprotein profiles among middle aged male smokers: a study from southern India. Tobacco Induced Diseases. 8: 11-15.

Bethesda, MD: Department Of Health And Human Services, National Institutes Of Health, National Cancer Institute.

- Food Chemistry. 48: 259–261.
Bibliography

Ramadan, M. F., Kroh, L. W. and Morsel, T. 2003. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger
134

Bibliography

Steinberg, D. and Witztum, J. L. 2002. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation. 105: 2107-2111.

may impair endothelial function and coronary blood flow in angiographically normal coronary arteries. Circ. J. **70**: 593-599.

Bibliography

Bibliography

