List of Figures

Fig. 1. Schematic diagram showing the main tissue components of the oral mucosa.

Fig. 2. Standard plot of chlorpheniramine maleate in Sorensen's phosphate buffer, pH 6.2

Fig. 3. Standard plot of chlorpheniramine maleate in PBS pH 7.4.

Fig. 4. Standard plot of astemizole in 0.1 N hydrochloric acid.

Fig. 5. Standard plot of astemizole in Sorensen's phosphate buffer, pH 6.2.

Fig. 6. Molecular species spectra of astemizole

Fig. 7. Ionisation profile of astemizole

Fig. 8. UV spectra of astemizole in low ionic strength buffers

Fig. 9. Tensile strength tester

Fig. 10. *In vitro* release of chlorpheniramine from Film I in Sorensen's buffer (pH 6.2) - Zero order release

Fig. 11. *In vitro* release of chlorpheniramine from Film I in Sorensen's buffer (pH 6.2) - First order release

Fig. 12. *In vitro* release of chlorpheniramine from Film II in Sorensen's buffer (pH 6.2) - Zero order release

Fig. 13. *In vitro* release of chlorpheniramine from Film II in Sorensen's buffer (pH 6.2) - First order release

Fig. 14. Comparison of *in vitro* release of chlorpheniramine from Film I and II in Sorensen's buffer, pH 6.2

Fig. 15. Fitting of the Hixon-Crowell Cube Root Law for *in vitro* release of chlorpheniramine from Film I in Sorensen's buffer (pH 6.2)

Fig. 16. Fitting of the Hixon-Crowell Cube Root Law for *in vitro* release of chlorpheniramine from Film II in Sorensen's buffer (pH 6.2)

Fig. 17. *In vitro* transport of chlorpheniramine from Film I in phosphated buffer saline through porcine buccal mucosa (pH 7.4) - Zero order transport plot

Fig. 18. *In vitro* transport of chlorpheniramine from Film I in phosphated buffer saline through porcine buccal mucosa (pH 7.4) - First order transport plot

Fig. 19. *In vitro* transport of chlorpheniramine from Film II in phosphated buffer saline through porcine buccal mucosa (pH 7.4) - Zero order transport plot

Fig. 20. *In vitro* transport of chlorpheniramine from Film II in phosphated buffer saline through porcine buccal mucosa (pH 7.4) - First order transport plot

Fig. 21. Comparison of *in vitro* transport studies of chlorpheniramine from Film I and II in phosphated buffer saline through porcine buccal mucosa (pH 7.4)

Fig. 22. *In vivo* absorption of chlorpheniramine from human buccal mucosa: Film I - Zero order absorption plot

Fig. 23. *In vivo* absorption of chlorpheniramine from human buccal mucosa: Film I - First order absorption plot

Fig. 24. *In vivo* absorption of chlorpheniramine from human buccal mucosa: Film I - Zero order absorption plot

Fig. 25. *In vivo* absorption of chlorpheniramine from human buccal mucosa: Film II - First order absorption plot
Fig. 26. Comparison of \textit{in vivo} absorption of chlorpheniramine through human buccal mucosa from Films I and II

Fig. 27. \textit{In vitro} release vs. \textit{in vivo} human buccal absorption of chlorpheniramine – Film I

Fig. 28. \textit{In vitro} release vs. \textit{in vivo} human buccal absorption of chlorpheniramine – Film I

Fig. 29. \textit{In vitro} release vs. \textit{in vivo} human buccal absorption of chlorpheniramine – Film I

Fig. 30. \textit{In vitro} release vs. \textit{in vivo} human buccal absorption of chlorpheniramine – Film I

Fig. 31. \textit{In vitro} dissolution-time profiles of tablets containing 24 mg of chlorpheniramine maleate in Sorensen's Buffer (pH 6.2)

Fig. 32. \textit{In vitro} dissolution-time profiles of selected tablet formulations (F1 and F3) containing 24 mg of Chlorpheniramine maleate in Sorensen's Buffer (pH 6.2)

Fig. 33. \textit{In vitro} dissolution of selected tablet formulations (F1 and F3) containing 24 mg of chlorpheniramine maleate in Sorensen's Buffer (pH 6.2) – Higuchi's Plot

Fig. 34. \textit{In vitro} dissolution-time profiles of tablets containing 17 mg of chlorpheniramine maleate in Sorensen's Buffer (pH 6.2)

Fig. 35. \textit{In vitro} dissolution-time profiles of selected tablet formulations (G1 and G3) containing 17 mg of chlorpheniramine maleate in Sorensen's Buffer (pH 6.2)

Fig. 36. \textit{In vitro} dissolution of selected tablet formulations (G1 and G3) containing 17 mg of chlorpheniramine maleate in Sorensen's Buffer (pH 6.2) – Higuchi's Plot

Fig. 37. Derivative plot for the determination of pK\textsubscript{a} of astemizole

Fig. 38. \textit{In vitro} release of astemizole from Film I in Sorensen's buffer (pH 6.2) - Zero order release

Fig. 39. \textit{In vitro} release of astemizole from Film II in Sorensen's buffer (pH 6.2) - Zero order release

Fig. 40. \textit{In vitro} release (log % remaining) of astemizole from Film I - First order release

Fig. 41. \textit{In vitro} release (log % remaining) of astemizole from Film II - First order release

Fig. 42. Fitting of the Hixon-Crowell Cube Root Law for \textit{in vitro} release of astemizole from Film I in Sorensen's buffer (pH 6.2)

Fig. 43. Fitting of the Hixon-Crowell Cube Root Law for \textit{in vitro} release of astemizole from Film II in Sorensen's buffer (pH 6.2)