LIST OF FIGURES

Fig 2.1 Sequence of events in rock breaking process
Fig 2.2 Partition of energy released by the explosive during rock blasting
Fig 2.3 Elements of blast geometry
Fig 2.4 Common initiation sequences
Fig 2.5 Effects of delay timing on muck pile
Fig 2.6 Regulating strength and water resistance of ANFO with emulsion and aluminum
Fig 2.7 Influence of block size on fragmentation
Fig 2.8 Cratering phenomenon of a constant charge at varying depth in the same formation
Fig 2.9 Effect of varying burden distance on fragmentation and displacement of rock
Fig 3.1 Key steps of the guided approach to blast design at surface mines
Fig 4.1 Partition of energy for different explosives in different rock types
Fig 4.2 Evaluation of explosives using yield, power consumption and powder factor
Fig 4.3 Peak particle velocity versus square root scaled distance
 (data recorded at 11 surface mines)
Fig 5.2 Dominant frequency versus distance from the blast to the sensor
Fig 5.3 Response of single storied buildings to ground vibration
Fig 5.4 Air overpressure produced by bench blasts
Fig 5.5 Experimental set-up for monitoring air overpressure produced by detonating cord
Fig 5.6 Air overpressure produced by covered and uncovered detonating cord
Fig 5.7 Air overpressure produced by detonating cord against cube root scaled distance
Fig 5.8 Flyrock distance versus stemming length to burden ratio
Fig 5.9 Influence of powder factor on flyrock in Mine E
Fig 5.10 Influence of initiation systems on flyrock
Fig. 6.1 Compatibility between blasthole diameter and bench height
Fig 6.2 Histograms of burden to blasthole diameter ratio
Fig 6.3 Histograms of burden to bench height ratio
Fig 6.4 Interval estimate of burden from hole diameter and bench height
Fig 6.5 Flow chart for calculation of burden
Fig 6.6 Illustration for calculation of new burden by linear interpolation
Fig 6.7 Histogram of spacing to burden ratio
Fig 6.8 Illustration for the need for RL correction
Fig 6.9 Burden versus length to diameter ratio of the charge
Fig 6.10 Improper order of detonation due to nonuniform delay intervals
Fig. 6.11 Recommended pattern for blasting with two holes per delay
Fig 6.12 Recommended pattern for blasting near dwellings
Fig 7.1 Pit plan for MCP
Fig 7.2 Number of holes per blast (Existing practice)
Fig 7.3 Number of rows per blast (Existing practice)
Fig 7.4 Explosive loading practice at MCP
Fig 7.5 Loading time for various cycles in granite
Fig 7.6 Number of passes required to fill the dumper in granite
Fig 7.7 Row-by-row initiation sequence with staggered pattern
Fig 7.8 V-type initiation sequence with rectangular pattern
Fig 7.9 Diagonal initiation sequence with rectangular pattern
Fig 7.10 Pit plan for RAP
Fig 7.11 Monthly consumption of explosives at RAP
Fig 7.12 Frequency of primary blast at RAP
Fig 7.13 Variation in maximum charge per delay at RAP
Fig 7.14 Variation in total charge per blast at RAP
Fig 7.15 View of Lambdhar limestone quarry
Fig 7.16 Screening plant to sort out fines and lumps
Fig 7.17 Influence of powder factor on production of fines