LIST OF TABLES

Table 2.1 Correction factor of rock deposition
Table 2.2 Correction factor for geologic structure
Table 2.3 Correction factor for number of rows
Table 2.4 Equations for calculation of spacing
Table 2.5 Angle of breakage as a function of burden based on single hole test
Table 2.6 Computer programs for blast design and analysis
Table 3.1 Rock categorisation based on compressive strength
Table 3.2 Relevance of site characteristics to blast design
Table 4.1 Equivalent products of major explosive manufacturers
Table 4.2 Summary of the blast performance data with different explosives
Table 4.3 Explosive performance indicators for different zones
Table 4.4 Explosive selection for different rock types
Table 5.1 Calculated peak particle velocity from Equations 5.2 and 5.3 for various scaled distances
Table 5.2 Response of single storied buildings to ground vibration
Table 5.3 Response of FCI Prilling Tower to ground vibration
Table 5.4 Calculated overpressure levels from Equations 5.4 and 5.5
Table 5.5 Constants (intercept and slope) of the best fit lines
Table 5.6 Air overpressure produced by secondary blasts
Table 5.7 Base data on flyrock observations at limestone quarries
Table 5.8 Index of determination between flyrock and examined parameters
Table 6.1 Blast evaluation for different combinations of hole diameter and bench height
Table 6.2 Global survey of hole diameter and bench height
Table 6.3 Parameters considered for burden calculation
Table 6.4 Minimum and maximum values of constant C1
Table 6.5 Correction factor for the block size
Table 6.6 Optimal spacing to burden ratio according to model and half scale blasts
Table 6.7 Descriptive statistics of spacing to burden ratio for commonly used hole diameters
Table 6.8 Recommended stemming length for surface mines
Table 6.9 Empirical constants for determination of powder factor from rock type and density
Table 6.10 The results of the regression analysis between burden and the length to diameter ratio of the charge
Table 7.1 Physico-mechanical properties of granite and quartz (ore body)
Table 7.2 Penetration rate of drilling
Table 7.3 Summary of geotechnical studies at MCP
Table 7.4 Computed maximum charge per delay for various distances
Table 7.5 Existing blast design parameters at MCP
Table 7.6 Calculated and optimised blast design parameters
Table 7.7 Savings in explosive consumption
Table 7.8 Savings in drilling
Table 7.9 Summary of geotechnical studies at RAP
Table 7.10 Drilling rates in different rocks
Table 7.11 Summary of main blasting parameters for ore and waste
Table 7.12 Summary of primary and secondary blasts at RAP
Table 7.13 Base data collected during field investigations
Table 7.14 Blast results with comments
Table 7.15 Recommended blast design parameters
Table 7.16 Physico-mechanical properties of grey marble
Table 7.17 Orientation and spacing of joints at LLQ
Table 7.18 Details of experimental blasts
Table 7.19 Results of experimental blasts
Table 7.20 Optimised blast design parameters