LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Fabrication of a LbL film. A solid substrate, bearing negative charges, is initially immersed in the polycationic solution (1); In the following step (a), the excess of molecules can be removed by immersing the substrate in the washing solution (2); The substrate containing the cationic layer is subsequently (b) immersed in the anionic polyelectrolyte solution (3); (c) The molecules not effectively attached can be removed in the washing solution (4).</td>
<td>27</td>
</tr>
<tr>
<td>1.2</td>
<td>Structure of cellulose triacetate (CTA).</td>
<td>29</td>
</tr>
<tr>
<td>1.3</td>
<td>Structure of polyether sulfone.</td>
<td>31</td>
</tr>
<tr>
<td>1.4</td>
<td>Preparation of Nylon 6,6.</td>
<td>32</td>
</tr>
<tr>
<td>2.1</td>
<td>Chemical structure of (A) chitosan (B) polyethyleneimine (C) polyacrylic acid and (D) polystyrene sulfonate.</td>
<td>61</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of riboflavin (RF) and folic acid (FA).</td>
<td>62</td>
</tr>
<tr>
<td>2.3</td>
<td>Membrane cell.</td>
<td>68</td>
</tr>
<tr>
<td>2.4</td>
<td>Amicon 8050 ultrafiltration.</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Structure of (A) methylene blue (MB) and (B) coomassie brilliant blue (CBB).</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>FTIR spectra of (A) Nylon and PAA/CHI membrane with (B) 5 (C) 9 and (D) 20 bilayers. Deposition pH of PAA and CHI solution was 4 and 2 respectively.</td>
<td>78</td>
</tr>
<tr>
<td>3.3</td>
<td>FTIR spectra of PAA/PEI membranes with (A) 20</td>
<td>79</td>
</tr>
</tbody>
</table>
(B) 9 and (C) 5 bilayers. Deposition pH of PAA and PEI solutions was 4 and 6 respectively.

3.4 FTIR spectra of PAA/PEI (20 bl). pH of PEI: (A) 2, (B) 4 and (C) 6. Deposition pH of PAA was 4.

3.5 SEM Images of (A) Bare nylon and 20 bl (B) PAA/CHI (C) PAA/PEI. pH of PAA, CHI and PEI was 4, 2 and 6 respectively.

3.6 UV-vis spectra of MB loaded PAA/CHI membranes. Number of bilayers 3.5, 4.5, 6.5 and 9.5 respectively in the increasing order. Deposition pH of PAA and CHI was 4 and 2 respectively.

3.7 UV-vis spectra of MB loaded PAA/PEI membranes. Number of bilayers 3.5, 4.5, 6.5, 14.5 and 19.5 respectively in the increasing order. Deposition pH of PAA and PEI was 4 and 6 respectively.

3.8 SEM images of MB loaded 20 bl (A) PAA/CHI and (B) PEI/PAA. Deposition pH of PAA, PEI and CHI was 4, 6 and 2 respectively.

3.9 UV-vis spectra of CBB loaded PAA/CHI membranes. Number of bilayers 3, 5, 7, 15 and 20 respectively in the increasing order. Deposition pH of PAA and CHI was 4 and 2 respectively.

3.10 UV-vis spectra of CBB loaded PAA/PEI membranes. Number of bilayers 3, 5, 7, 15 and 20 respectively in the increasing order. Deposition pH of PAA and PEI was 4 and 6 respectively.

3.11 UV-vis spectra of CBB loaded PAA/PEI (20 bl). Deposition pH of PEI (A) 6 (B) 4 and (C) 2. pH of PAA: 4.

3.12 UV-vis spectra of PAA/PEI (19.5 bl) after MB loading. Deposition pH of PEI: (A) 2 (B) 4 and (C) 6.
pH of PAA: 4.

3.13 UV-vis spectra of MB loaded PAA/CHI (19.5 bl). pH of MB: (A) 10.5 (B) 7 and (C) 3. Deposition pH of PAA and CHI was 4 and 2 respectively.

3.14 UV-vis spectra of MB loaded PAA/PEI (20 bl) pH of MB: (A) 7 (B) 10.5 and (C) 3. Deposition pH of PAA and PEI was 4 and 6 respectively.

3.15 UV-vis spectra of CBB loaded PAA/CHI (19.5 bl). pH of CBB: (A) 7 (B) 3 and (C) 10.5. Deposition pH of PAA and CHI was 4 and 2 respectively.

3.16: UV-vis spectra of CBB loaded PAA/PEI (19.5 bl). pH of CBB: (A) 7 (B) 3 and (C) 10.5. Deposition pH of PAA and PEI was 4 and 6 respectively.

3.18 Absorbance of MB (605 nm) released from PAA/CHI (19.5 bl) to water at pH (▲) 3 (●) 5 and (▼) 7. Deposition pH of PAA and CHI was 4 and 2 respectively.

3.19 Release of MB (605 nm) from PEI/PAA (19.5 bl) to water at pH (▲) 3 (■) 5 and (●) 7. Deposition pH of PAA and PEI was 4 and 6 respectively.

3.20 Release of CBB (600 nm) from PAA/CHI (20 bl) to water at pH (▲) 7 (●) 5 and (▼) 3. Deposition pH of PAA and CHI was 4 and 2 respectively.

3.21 Release of CBB (600 nm) from PEI/PAA (20 bl) to water at pH (▲) 7 (●) 5 and (▼) 3. Deposition pH of PAA and PEI was 4 and 6 respectively.

3.22 Comparison of the COD values before after
treatment with bare nylon, PEI/PAA and PAA/CHI (19.5 and 20 bl).

4.1 Structure of riboflavin (RF).

4.2 FTIR spectra of CHI/PSS (7.5 bl) prepared from different NaCl concentrations (0.01 to 1 mol L\(^{-1}\)). Inset: Variation of absorbance at 1030 cm\(^{-1}\) against the concentration of NaCl.

4.3 SEM images of CHI/PSS (7.5 bl) prepared under different NaCl concentrations. (A) 0.01 (B) 0.02 (C) 0.05 (D) 0.1 (E) 0.2 (F) 0.5 mol L\(^{-1}\).

4.4 SEM images of CHI/PSS (7.5 bl) prepared from different concentrations of NaCl (A) 0.5 mol L\(^{-1}\) and (B) 1 mol L\(^{-1}\).

4.5 FTIR spectra of CHI/PSS (7.5 bl) prepared from different salt solutions (1) KI (2) MgCl\(_2\) (3) KCl (4) NaCl. Concentration of salt solution: 0.2 mol L\(^{-1}\).

4.6 SEM images of CHI/PSS (7.5 bl) prepared from different salt solutions. Concentration of salt solution: 0.2 mol L\(^{-1}\).

4.7 Effect of number of bilayers of CHI/PSS on RF uptake. Concentration of RF: 10\(^{-5}\) mol L\(^{-1}\) and pH: 7.2. Dipping time: 12 hours.

4.8 UV-vis spectra of RF immobilized CHI/PSS (7.5 bl) prepared from different NaCl concentration. Inset: Absorbance at 445 nm against the NaCl concentration.

4.9 UV-vis spectra of RF immobilized CHI/PSS (7.5 bl) prepared from different salts. Concentration of RF: 0.001 mol L\(^{-1}\) and pH: 7.2, concentration of salt solution: 0.2 mol L\(^{-1}\).
4.10 SEM images of RF immobilized CHI/PSS (7.5 bl), prepared from different salts (A) NaCl (B) KCl (C) MgCl₂ (D) KI. Concentration of salt solution: 0.2 mol L⁻¹.

4.11 UV-vis spectra of RF immobilized CHI/PSS (7.5 bl), at different pH of RF. Concentration of RF: 0.001 mol L⁻¹. Inset: absorbance at 445 nm against pH of RF.

4.12 UV-vis spectra of RF immobilized CHI/PSS (7.5 bl) loaded under different RF concentrations (0.0001 to 0.01 mol L⁻¹), pH of RF: 7.2. Inset: absorbance at 445 nm against the concentration of RF.

4.13 SEM images of RF immobilized CHI/PSS (7.5 bl) at different RF concentrations (A) 0.001 (B) 0.002 (C) 0.005 and (D) 0.01 mol L⁻¹.

4.14 Stability of RF as a function of storage time in (■) 7.5 bl CHI/PSS and (●) solution state. Concentration of RF for immobilization: 0.001 mol L⁻¹.

4.15 Time dependent release of RF from 7.5 bl CHI/PSS in to 0.1 mol L⁻¹ NaCl solution at different pH, 3 (■), 5 (∇), 7.2 (●) and 9.4 (▲).

4.16 Fluorescence quenching of BSA [10⁻⁵ mol L⁻¹] by RF released from CHI/PSS (7.5 bl) under different pH of BSA (A) 3 (B) 5 and (C) 7. Decrease in fluorescence intensity was recorded in time interval 30 min,1, 2, 3, 4 and 6 hours. Fluorescence of BSA shows decreases (340 nm) with increase in concentration of RF (520 nm). Inset: Stern-Volmer plots of RF-BSA interactions.

4.17 pH dependent quenching of released RF from CHI/PSS (7.5 bl) on BSA (10⁻⁵ mol L⁻¹). pH of BSA 3 (■), 5 (∇) and 7.2 (▲).

4.18 SEM images of (A) RF immobilized CHI/PSS (7.5
and after exposing to BSA at pH (B) 3 (C) 5 and (D) 7.2, concentration of RF: 0.002 mol L\(^{-1}\) and pH: 7.2.

4.19 pH dependent quenching efficiency of BSA on RF. pH of BSA 3 (●) 5 (■) 7.2 (▲). Concentration of BSA: 10\(^{-5}\) mol L\(^{-1}\).

4.20 Time-dependent fluorescence quenching of immobilized RF (0.001 mol L\(^{-1}\)) in presence of KI with different concentration. (A) 0.0001 (B) 0.0005 and (C) 0.001 mol L\(^{-1}\). Decrease in fluorescence intensity was recorded in time intervals of 5 min. First spectrum was recorded just after dipping RF loaded multilayer in to KI solution.

4.21 Concentration dependent quenching of immobilized RF (0.001 mol L\(^{-1}\)) in presence of KI, (A) RF only (B) in presence of KI, 0.0001 mol L\(^{-1}\) (C) 0.0005 mol L\(^{-1}\) (D) 0.001 mol L\(^{-1}\). Spectra were recorded 30 minutes after dipping. Inset: Stern-Volmer plot.

5.1 Fabrication of multilayers: the zone model.

5.2 Selectivity of cations through CHI/PSS multilayers prepared from salt and without salt conditions.

5.3 FTIR spectra of 15.5 bl CHI/PSS prepared from salt free and NaCl (0.1 mol L\(^{-1}\)) solution.

5.4 SEM images of 15.5 bl CHI/PSS prepared from (A) salt free and (B) 0.1 mol L\(^{-1}\) NaCl solution.

5.5 Selectivity of Cl\(^{-}\)/SO\(_4^{2-}\) and Cl\(^{-}\)/[Fe(CN)]\(_6^{3-}\) through CHI/PSS as a function of number of bilayers.

5.6 FTIR spectra of 12.5 bl CHI/PSS before (A) and after (B) capping with 4.5 bilayers of CHI/PAA.

5.7 SEM images of 12.5 bl CHI/PSS (A) before and (B)
after capping with 4.5 bl of CHI/PAA.

5.8 Rejection percentage of AlCl$_3$ (under pressure driven condition) as a function of number of bilayers. Membranes used were CHI/PSS and CHI/PSS capped with 4.5 bl CHI/PAA.

5.9 Rejection percentage of K$_3$[Fe(CN)$_6$] (under pressure driven condition) as a function of number of bilayers. Membranes used were CHI/PSS and CHI/PSS capped with 4 bl CHI/PAA.

5.10 TGA weight loss profile of bare PES.

5.11 TGA weight loss profile of 8.5 bl CHI/PSS. A$_r$ represents the isothermal water loss profile and B$_r$ represents the successive ramping water loss profile.

5.12 TGA weight loss profile of 8.5 bl CHI/PSS.

5.13 Increase in % rejection (AlCl$_3$) and water holding capacity of CHI/PSS multilayers with increase in number of bilayers.

5.14 % rejection of FA by CHI/PSS multilayers as a function of number of bilayers. Deposition pH of CHI and PSS was 1.78.

5.15 pH dependent transport of FA. Concentration of FA is 0.001 mol L$^{-1}$. The membrane used for the study is 20 bl CHI/PSS, pH of CHI and PSS was 1.78.