LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2 1</td>
<td>Specific stiffness v/s specific strength for structural materials [81]</td>
<td>36</td>
</tr>
<tr>
<td>Fig 2 2</td>
<td>Materials comparison for thermal management applications [81]</td>
<td>38</td>
</tr>
<tr>
<td>Fig 4 1</td>
<td>Computational results shows the particulate volume fraction distribution v/s distance from the centre of the specimen 100 (\Delta t) (a) larger diameter (b) smaller diameter</td>
<td>61</td>
</tr>
<tr>
<td>Fig 4 2</td>
<td>Computational results shows the particulate volume fraction distribution v/s distance from the centre of the specimen 200 (\Delta t) (a) larger diameter (b) smaller diameter</td>
<td>62</td>
</tr>
<tr>
<td>Fig 4 3</td>
<td>Computational results shows the particulate volume fraction distribution v/s distance from the centre of the specimen 300 (\Delta t) (a) larger diameter (b) smaller diameter</td>
<td>63</td>
</tr>
<tr>
<td>Fig 4 4</td>
<td>Computational results shows the particulate volume fraction distribution v/s distance from the centre of the specimen 400 (\Delta t) (a) larger diameter (b) smaller diameter</td>
<td>64</td>
</tr>
<tr>
<td>Fig 4 5</td>
<td>Computational results shows the density of composites v/s distance from the centre of the specimen (a) larger diameter (b) smaller diameter</td>
<td>65</td>
</tr>
<tr>
<td>Fig 5 1</td>
<td>Silicon carbide</td>
<td>69</td>
</tr>
<tr>
<td>Fig 5 2</td>
<td>Aluminum 6061 blocks</td>
<td>71</td>
</tr>
<tr>
<td>Fig 5 3</td>
<td>Schematic diagram shows centrifugal casting</td>
<td>72</td>
</tr>
<tr>
<td>Fig 5 4</td>
<td>Alumina crucible containing the precursor composite, in the furnace</td>
<td>73</td>
</tr>
<tr>
<td>Fig 5 5</td>
<td>SiC powder (50(\mu)m)</td>
<td>73</td>
</tr>
<tr>
<td>Fig 5 6</td>
<td>Specimen sectioning</td>
<td>74</td>
</tr>
<tr>
<td>Fig 5 7</td>
<td>Rough polishing machine</td>
<td>74</td>
</tr>
<tr>
<td>Fig 5 8</td>
<td>Polishing emery papers</td>
<td>75</td>
</tr>
<tr>
<td>Fig 5 9</td>
<td>Fine and smooth polishing machine</td>
<td>75</td>
</tr>
<tr>
<td>Fig 5 10</td>
<td>Polished specimens</td>
<td>77</td>
</tr>
</tbody>
</table>
Development of Functionally Graded Materials for Space Applications

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 5.11</td>
<td>Optical microscope</td>
</tr>
<tr>
<td>Fig 5.12</td>
<td>Microstructure of the Al/Silicon carbide fabricated by Centrifugal casting method (particulate size 50 μm)</td>
</tr>
<tr>
<td>Fig 5.13</td>
<td>Plasma spectrometer</td>
</tr>
<tr>
<td>Fig 5.14</td>
<td>Graphical representation of gradient of silicon carbide particulates in the al/silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 5.15</td>
<td>Graphical representation of gradient of density of al/silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 5.16</td>
<td>Micro hardness tester</td>
</tr>
<tr>
<td>Fig 5.17</td>
<td>Graphical representation of gradient of micro-hardness of Al/silicon FGMs</td>
</tr>
<tr>
<td>Fig 5.18</td>
<td>Graphical representation of gradient of micro-hardness of Al/silicon carbide - FGMs</td>
</tr>
<tr>
<td>Fig 6.1</td>
<td>Tension and Compression specimen</td>
</tr>
<tr>
<td>Fig 6.2</td>
<td>Universal testing machine</td>
</tr>
<tr>
<td>Fig 6.3</td>
<td>Tensile Testing</td>
</tr>
<tr>
<td>Fig 6.4</td>
<td>Tensile Al/FGM Specimen after break</td>
</tr>
<tr>
<td>Fig 6.5</td>
<td>Graphical representation of variation of density of Al/SiC FGMs</td>
</tr>
<tr>
<td>Fig 6.6</td>
<td>Graphical representation of variation of yield strength of Al/Silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 6.7</td>
<td>Graphical representation of variation of uts of Al/silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 6.8</td>
<td>Graphical representation of variation of young’s modulus of al/silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 6.9</td>
<td>Graphical representation of variation of compression strength of al/silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 6.10</td>
<td>Graphical representation of variation of ductility of al/silicon carbide FGMs</td>
</tr>
<tr>
<td>Fig 6.11</td>
<td>Scanning Electronic Microscope</td>
</tr>
<tr>
<td>Fig 6.12</td>
<td>SEM fractographs of the FGM (30 μm particulate reinforced FGM)</td>
</tr>
</tbody>
</table>
Development of functionally graded materials for space applications

Fig 6.13 SEM fractographs of the FGM (50 µm particulate reinforced FGM)

Fig 7.1 Electronic weighing machine

Fig 7.2 Pin-on-disc test rig

Fig 7.3 Wear specimens taken from the FGM ingot

Fig 7.4 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 10 N at a) 100 rpm and b) 200 rpm

Fig 7.5 Wear rate of FGM with 30 µm sic particles, measured with a pin-on-disc apparatus of normal load 10 N at a) 300rpm and b) 400 rpm

Fig 7.6 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 20 N at a) 100rpm and b) 200 rpm

Fig 7.7 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 20 N at a) 300rpm and b) 400 rpm

Fig 7.8 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 30 N at a) 100rpm and b) 200 rpm

Fig 7.9 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 30 N at a) 300rpm and b) 400 rpm

Fig 7.10 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 40 N at a) 100rpm and b) 200 rpm

Fig 7.11 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 40 N at a) 300rpm and b) 400 rpm

Fig 7.12 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 50 N at a) 100rpm and b) 200 rpm

Fig 7.13 Wear rate of FGM with 30 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 50 N at a) 300rpm and b) 400 rpm

Fig 7.14 Wear rate of FGM with 50 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 10 N at a) 100rpm and b) 200 rpm

Fig 7.15 Wear rate of FGM with 50 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 10 N at a) 300rpm and b) 400 rpm

Fig 7.16 Wear rate of FGM with 50 µm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 20 N at a) 100rpm and b) 200 rpm
Development of functionally graded materials for space applications

Fig 7.17 Wear rate of FGM with 50 μm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 20 n at a) 300 rpm and b) 400 rpm

Fig 7.18 Wear rate of FGM with 50 μm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 30 n at a) 100 rpm and b) 200 rpm

Fig 7.19 Wear rate of FGM with 50 μm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 30 n at a) 300 rpm and b) 400 rpm

Fig 7.20 Wear rate of FGM with 50 μm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 40 n at a) 100 rpm and b) 200 rpm

Fig 7.21 Wear rate of FGM with 50 μm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 40 n at a) 300 rpm and b) 400 rpm

Fig 7.22 Wear rate of FGM with 50 μm silicon carbide particles, measured with a pin-on-disc apparatus of normal load 50 n at a) 100 rpm and b) 200 rpm

Fig 7.23 SEM micrographs of the worn surfaces of the specimen taken from two types of FGM for both Al/SiC (30 μm size & 50 μm size)

Fig 8.1 Corrosion Test Chamber

Fig 8.2 Comparison of the corrosion rate v/s exposure time for Al/30 μm SiC FGM

Fig 8.3 Comparison of the corrosion rate v/s exposure time for Al/50 μm SiC FGM

Fig 8.4 Comparison of the corrosion rate v/s HCl normality for Al/30 μm SiC FGM

Fig 8.5 Comparison of the corrosion rate v/s HCl normality for Al/50 μm SiC FGM

Fig 8.6 Comparison of the corrosion rate v/s distance from the centre of ingot for both Al/30 μm SiC and Al / 50 μm SiC FGM at 24 hr exposure time

Fig 8.7 Comparison of the corrosion rate v/s distance from the centre of ingot for both Al/30 μm SiC and Al / 50 μm SiC FGM at 48 hr exposure time

Fig 8.8 Comparison of the corrosion rate v/s distance from the centre of ingot for both Al/30 μm SiC and Al / 50 μm SiC FGM at 72 hr exposure time

Fig 8.9 Comparison of the corrosion rate v/s distance from the centre of ingot for both Al/30 μm SiC and Al / 50 μm SiC FGM at 96 hr exposure time