REFERENCES


ARCHIBALD, B.C., (1981), Continuous review (s,S) policies with lost sales, Mgmt. Sci., 27, 1171-1177

ARCHIBALD, B.C. and SILVER, E.A., (1978), (s,S) policies under continuous review and discrete compound Poisson demand, Mgmt. Sci., 24, 899-908


AZOURY, K.S. and BRILL, P.H., (1992), Analysis of net inventory in continuous review models with random lead time, EJOR, 59, 383-392

AZOURY, K.S. and MILLER, B.L., (1984), A comparison of the optimal ordering levels of Bayesian and non-Bayesian inventory


BOWMAN, K.O. and SHENTON, L.R., (1979), Approximation percentage points for Pearson distributions, *Biometrika*, 66, 147-151

BROWN, G.F. and ROGERS, W.F., (1972), A Bayesian approach to
demand estimation and inventory provisioning, *Naval Res. Logist. Quart.*, 19, 607-624


CROUCH, R.B. and OGLESBY, S., (1978), Optimisation of a few lot sizes to cover a range of requirements, *J. Opl. Res. Soc.*, 29, 897-904


DAS, C., (1975a), Approximate solution to the (Q,r) inventory model for gamma lead times, *Mgmt. Sci.* 22, 1043-1047

DAS, C., (1975b), Some aids for lot-size inventory control under normal lead time demand, *AIIE. Trans.*, 7, 77-79


179

EHRHARDT, R., (1979), The power approximation for computing (s,S) inventory policies, Mgmt. Sci., 25, 777-786

EHRHARDT, R., (1984), (s,S) policies for a dynamic inventory model with stochastic lead times, Opns. Res., 32, 121-132

EHRHARDT, R. and MOSIER, C., (1984), A revision of the power approximation for computing (s,S) policies, Mgmt. Sci., 30, 618-622


FEDERGRUEN, A. and ZHENG, Y., (1992), An efficient algorithm for computing optimal (r,Q) policy in a continuous review stochastic inventory system, Opns. Res., 40, 808-813


FOTOPOULOS, S.B. and WANG, M.C. and RAO, S.S., (1988), Safety stock determination with correlated demands and arbitrary lead


GALLAGHER, D.J., (1969), Two periodic review inventory models with backorders and stuttering Poisson demands, AIIE. Trans., 1, 164-171


KOTTAS, J.F and LAU, H.S. (1979), A realistic approach for
modelling stochastic lead time distributions, *AIIE. Trans.*, 11, 54-60


Richards, F., (1975), Comments on the distribution of inventory position in a continuous review (s,S) system, *Opns Res.*, 23, 366-371


Sahin, I., (1979), On the stationary analysis of continuous review (s,S) inventory systems with constant lead times, *Opns. Res.*, 27, 717-729


Sahin, I., (1983), On the continuous review (s,S) inventory model
under compound renewal demand and random lead times, *J. Appl. Prob.*, 20, 213-219


SAHIN, I., and SINHA, D, (1987), Renewal approximation to optimal order quantities for a class of continuous review inventory systems, *Naval Res. Logist. Quart.*, 34, 655-667


SCHMEISER, B.W. and DEUTSCH, S. J., (1977), A versatile four parameter family of probability distributions suitable for simulation, *AIIE. Trans.* 9, 176-181

SCHNEIDER, H. (1978), Methods for determining the re-order point of an (s,S) ordering policy when a service level is specified, *J. Opl. Res. Soc.*, 29, 1181-1194


SHORE, H., (1982), Simple approximations for the inverse cumulative function, the density function and the loss integral


SRINIVASAN, S.K., (1988), Analysis of (s,S) inventory systems
with general lead time demand distributions and adjustable reorder size optimisations, 19, 557-576


TIJMS, H.C. and GROENEVELT, H., (1984), Simple approximations for the reorder point in periodic review and continuous review (s,S) inventory systems with service level constraints, European J. Opns. Res., 17, 175-190

VEINOTT, A.F., (1966), The status of Mathematical inventory theory, Mgmt. Sci., 12, 745-777

VEINOTT, A.F., and WAGNER, H.M., (1965), Computing optimal (s,S) inventory policies, Mgmt. Sci., 11, 525-552


WHITT, W., (1982), Approximating a point process by a renewal process: two basic methods, Opns. Res., 30, 125-147


ZACKS, S., (1969), Bayes sequential design of stock levels, Naval Res. Logist. Quart., 16, 143-155
ZHENG, Y.S., (1992), On properties of stochastic inventory system, Mgmt. Sci., 38, 87-103
ZIPKIN, P., (1986), Inventory service level measures: Convexity and approximation, Mgmt. Sci., 32, 975-981

A- 9651