<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>I</th>
<th>General introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER</td>
<td>II</td>
<td>Characteristics of glucose absorption in the pigeon small intestine</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>III</td>
<td>Mechanism of sodium interaction with glucose transport</td>
<td>64</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>IV</td>
<td>Interaction of phlorizin and phloretin with glucose transport system(s)</td>
<td>82</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>V</td>
<td>Effects of harmaline and ouabain on the transport of glucose</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General summary</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>References</td>
<td>118</td>
</tr>
<tr>
<td>Section</td>
<td>Page No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Historical perspectives</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Methods employed to study intestinal absorption</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.1 In vivo methods</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2 In vitro methods</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Mechanisms of solute transport</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.1 Passive diffusion</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.2 Active transport</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3 Transport involving chemical change of substrates</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3.1 Phosphorylating systems</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3.2 Hydrolase-related transport systems</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.4 Discontinuous transport</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.4.1 Pinocytosis</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.4.2 Translocation</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Location of digestive and absorptive processes: the digestive-absorptive surface</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Distribution of transport systems in the small intestine</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Factors affecting the site of absorption</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Circadian rhythmicity in digestive and absorptive functions</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Interaction of Na(^+) with nutrient transport systems</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.1 Recognition of the role of Na(^+) in intestinal sugar transport</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.2 Interrelationship between the entry of certain sugars, Na(^+) and water</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.3 Effects of Na(^+) on the kinetic parameters of solute transport in small intestine</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9 Role of K(^+) in intestinal transport</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10 Models proposed for solute transport</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11 Scope of the present investigation</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>