LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>Cartesian robot configuration</td>
<td>16</td>
</tr>
<tr>
<td>1 2</td>
<td>Cylindrical robot configuration</td>
<td>16</td>
</tr>
<tr>
<td>1 3</td>
<td>Polar robot configuration</td>
<td>16</td>
</tr>
<tr>
<td>1 4</td>
<td>Articulated robot configuration</td>
<td>19</td>
</tr>
<tr>
<td>1 5</td>
<td>Open and closed kinematic structures</td>
<td>19</td>
</tr>
<tr>
<td>1 6</td>
<td>SCARA robot configuration</td>
<td>19</td>
</tr>
<tr>
<td>1 7</td>
<td>Spine robot configuration</td>
<td>22</td>
</tr>
<tr>
<td>1 8</td>
<td>Pendulum robot configuration</td>
<td>22</td>
</tr>
<tr>
<td>1 9</td>
<td>Work envelope of cartesian robot configuration</td>
<td>25</td>
</tr>
<tr>
<td>1 10</td>
<td>Work envelope of cylindrical robot configuration</td>
<td>25</td>
</tr>
<tr>
<td>1 11</td>
<td>Work envelope of polar robot configuration</td>
<td>25</td>
</tr>
<tr>
<td>1 12</td>
<td>Work envelopes of articulated robot configuration</td>
<td>27</td>
</tr>
<tr>
<td>1 13</td>
<td>Reach of the end-effector within work envelope of articulated robot configuration</td>
<td>27</td>
</tr>
<tr>
<td>1 14</td>
<td>Work envelope of SCARA robot configuration</td>
<td>27</td>
</tr>
<tr>
<td>1 15</td>
<td>Work envelope of spine robot configuration</td>
<td>29</td>
</tr>
<tr>
<td>1 16</td>
<td>Work envelope of pendulum robot configuration</td>
<td>29</td>
</tr>
<tr>
<td>2 1</td>
<td>Schematic diagram of human arm configuration</td>
<td>53</td>
</tr>
<tr>
<td>2 2</td>
<td>Schematic diagram of the principle of new manipulator</td>
<td>53</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.3</td>
<td>Work volume of the basic robot configurations</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>Work volume of the proposed manipulator</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Kinematic arrangement of the proposed manipulator</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Kinematic analysis of the proposed manipulator-Geometry based approach</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>Proposed manipulator with the DH notations</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>X-Y plot for work envelope with (\theta_1) as variable and (\theta_2) and (\theta_3) as constants</td>
<td>82</td>
</tr>
<tr>
<td>3.5</td>
<td>X-Y plot for work envelope with (\theta_1) as constant and (\theta_2) and (\theta_3) as variables</td>
<td>82</td>
</tr>
<tr>
<td>3.6</td>
<td>Y-Z plot for work envelope with (\theta_1) as constant and (\theta_2) and (\theta_3) as variables</td>
<td>83</td>
</tr>
<tr>
<td>3.7</td>
<td>Z-X plot for work envelope with (\theta_1) as constant and (\theta_2) and (\theta_3) as variables</td>
<td>83</td>
</tr>
<tr>
<td>4.1</td>
<td>Isometric view of the proposed manipulator</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Support structure</td>
<td>88</td>
</tr>
<tr>
<td>4.3</td>
<td>Spherical ball with arm</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Ball support structure with bearing assembly</td>
<td>90</td>
</tr>
<tr>
<td>4.5</td>
<td>Slide over sector arm assembly</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Slide drive assembly</td>
<td>92</td>
</tr>
<tr>
<td>4.7</td>
<td>Elbow drive assembly</td>
<td>92</td>
</tr>
<tr>
<td>4.8</td>
<td>Exploded view of the proposed manipulator model</td>
<td>94</td>
</tr>
<tr>
<td>4.9</td>
<td>Photograph of the proposed manipulator assembly</td>
<td>95</td>
</tr>
<tr>
<td>4.10</td>
<td>X-Y plot for comparison of work envelope with (\theta_1) as variable and (\theta_2) and (\theta_3) constants</td>
<td>97</td>
</tr>
</tbody>
</table>

xvi
4 11 X-Y plot for comparison of work envelope with \(\theta_1 \) as variable and \(\theta_2 \) and \(\theta_3 \) constants

4 12 X-Y plot for comparison of work envelope with \(\theta_1 \) as constant and \(\theta_2 \) and \(\theta_3 \) variables

4 13 Y-Z plot for comparison of work envelope with \(\theta_1 \) as constant and \(\theta_2 \) and \(\theta_3 \) variables

4 14 Z-X plot for comparison of work envelope with \(\theta_1 \) as constant and \(\theta_2 \) and \(\theta_3 \) variables

5 1 Principle of casting manipulator

5 2 Principle of the proposed swing motion manipulator

5 3 Analytical model of swing motion manipulator

5 4 Swing states of excitation and suppression

5 5 Reference trajectory of joint 3

5 6 Swing angle of joint 2 and maximum displacement of joint 3

5 7 Rigid arm angular displacement \(\theta_2 \) versus reach

5 8 Exploded view of proposed swing motion manipulator model

5 9 Photograph of the swing motion manipulator assembly

6 1 Biped robot realizations with number of degrees of freedom

6 2 Different postures of biped robot

6 3 Layout of biped robot

6 4 Biped robot configuration similar to human leg

6 5 New biped robot configuration

6 6 Postures of new biped configuration

XVII
7 1 Schematic diagram of the proposed biped robot 135
7 2 Kinematic analysis of the proposed biped robot 135
7 3 Forces acting on the proposed biped robot 137
8 1 Schematic arrangement of pneumatic cylinders 142
8 2 Main Body with bearing 144
8 3 Leg mounting assembly 144
8 4 Leg assembly 146
8 5 Moving carriage assembly 146
8 6 Exploded view of the proposed biped Robot model 148
8 7 Photograph of the proposed biped robot assembly 149
8 8 Details of manually operated control valve 150
8 9 Circuit for actuation and retrieval of the cylinder using manually operated control valve 150
9 1 Pneumatic sequence circuit for the proposed biped robot 156
9 2 Step travel diagram for actuating pneumatic cylinders 158
9 3 Step travel diagram for control valves 159
9 4 Time travel diagram for actuating pneumatic cylinders 160
9 5 Pneumatic circuit with single solenoid valve 162
9 6 Pneumatic circuit with double solenoid valve 163

XVIII