Notations

best – Index of the best vector in the current population
bin – Binomial crossover
\(C_m \) – Convergence measure
\(C_r \) and \(p_c \) – Crossover probability
\(D \) – Dimension of the problem
\(DE/a/b/c \) – A Differential Evolution variant with base vector ‘\(a \)’, ‘\(b \)’ number of vector differences and crossover scheme ‘\(c \)’
\(E(Var(x)) \) – Expected variance of a population \(x \)
exp – Exponential crossover
\(F \) and \(K \) – Scaling factor or amplification factor
\(f_1 \) to \(f_{14} \) – Benchmarking functions 1 to 14
\(f(X_{i,G}) \) – Fitness value of the current vector \(i \) in the generation \(G \)
\(f(U_{i,G}) \) – Fitness value of the trial vector \(i \) in the generation \(G \)
\(G \) – Generation number
\(GMax \) – Maximum number of generations
\(i \) – Index of the current vector in the current population
\(j_{ran} \) – Random parameter index
\(MaxFE \) – Maximum number of function evaluations
\(mf \) – Migration frequency
\(MOV \) – Mean of objective function values
\(mt \) – Migration topology
\(n \) – Number of islands
\(nc \) – Total number of successful runs made by a variant for all the functions
\(nc_f \) – Total number of successful runs made by a variant for a function
\(nm \) – Number of migrants
\(ni \) – Number of islands
\(n_t \) – Number of trial vectors to be generated
\(nt_t \) – Total number of runs for each function (in this thesis \(nt_t = 100 \) runs)
\(nt \) – Total number of runs for all the functions (in this thesis \(nt = 14 \) functions * \(nt_t = 1400 \) runs)
\(NP \) – Population size
\(P_c(\%) \) – Probability of convergence
\(P_G \) – Population in generation \(G \)
\(Q_m \) – Quality measure
\(rand_j[0,1] \) – \(j^{th} \) Evaluation of uniform random number generator
\(r_{1}^{i}, r_{2}^{i}, r_{3}^{i}, r_{4}^{i}, r_{5}^{i} \) – Random numbers
\(r_{j}^{i} \) – \(j^{th} \) random number generated for the current vector \(i \)
\(rp \) – Replacement policy
\(SP \) – Success performance
\(sp \) – Selection policy
\(SR \) – Success rate
\(Survivor_{t} \) – Best vector among \(n_t \) trial vectors
\(U_{t,G} \) – Trial vector \(i \) in generation \(G \)
\(V_{t,G} \) – Mutant vector \(i \) in generation \(G \)
\(Var(x) \) – Variance of a population \(x \)
\(x \) – Current population
\(X_{t,G} \) – Current vector \(i \) in generation \(G \)
\(X_{best,G} \) – Best vector in generation \(G \)
\(Y \) – Intermediate population obtained after mutation
\(Z \) – The population obtained by crossing over the population \(x \) and \(Y \)
\(\langle \cdot \rangle_D \) – Modulo functions with modulus \(D \)