LIST OF FIGURES

Figure 1.1 Representation of an electrochemical cell in which metallic Ti is anodized. 6
Figure 1.2 Scanning electron microscope (SEM) images of self-organized porous alumina and porous silicon formed by electrochemical anodization... 8
Figure 1.3 The number of articles published on valve metal oxide nanopore/nanotube layers formed by electrochemical anodization on different valve metals.. 9
Figure 1.4 TiO$_2$ nanotube array morphologies achieved by Ti anodization... 11
Figure 1.5 FESEM cross-sectional views of tapered nanotubes............. 14
Figure 1.6 Lateral view of the nanotubes formed in different pH solutions .. 17
Figure 1.7 FESEM images of TiO$_2$ nanotubes grown in FA based electrolyte at 35V for 48h ... 19
Figure 1.8 FESEM images of a TiO$_2$ nanotube array sample grown from a 2.0% HF-DMSO electrolyte for 70 h.............................. 21
Figure 1.9 Characteristic current transients for Ti anodization with and without fluorides in the electrolyte... 25
Figure 1.10 SEM micrographs from bamboo type nanotubes.................. 28
Figure 1.11 Represents FESEM images of lotus-root-shaped nanostructure and double-layered TiO$_2$ nanotube arrays.. 29
Figure 1.12 Schematic diagram of backside illuminated dye solar cell structures... 32
Figure 2.1 Schematic representation of polishing steps for creating nanopolished Ti plates... 69
Figure 2.2 Schematic diagram for anodization set up............................. 69
Figure 2.3 (a) SEM and (b) AFM images of polished Ti surface............... 72
Figure 2.4 (a) Representative SEM, (b) AFM images of aligned TiO$_2$ nanotubes, inset shows the 2D image.. 73

Figure 2.5 SEM images of nanotube formation in 0.5-wt% HF at different voltages for 20 minutes.. 74

Figure 2.6 SEM image of formation steps of nanotubes at 20V in 0.5-wt% HF (a) 5s (b) 30s (c) 60s (d) 90s (e) 120s (f) 5 min. (g) 10 min. (g) 10 min.. 75

Figure 2.7 SEM images of nanotubes fabricated in HF/DMSO at 40 V for 30 hours.. 77

Figure 2.8 SEM images of nanotubes fabricated in HF/EG at 40 V for 30 hours ... 78

Figure 2.9 Aspect ratio variation with time of anodization in aqueous HF at 20V and HF/DMSO and HF/EG at 40V... 78

Figure 2.10 XRD patterns of as prepared (in black) and annealed (in colour) TiO$_2$ nanotubes fabricated in three different electrolyte systems.. 79

Figure 2.11 SEM images of pore diameter variation at (a) 40, (b) 60, (c) 80, (d) 100 and (e) 150 (f) 200 voltages in HF/EG of 1:15 for 10 hours.. 81

Figure 2.12 Representative SEM images depicting pore diameter variation for different ratios of HF/EG at 40V ... 82

Figure 2.13 Overall representation of electrochemical conditions for the nanotube formation in three electrolytic systems.. 84

Figure 2.14 The chemical interaction of organic electrolytes............... 86

Figure 2.15 FTIR spectrum of EG and HF/EG mixture................................. 87

Figure 2.16 The experimental and simulated bode plots for electrochemical cell.... 89

Figure 2.17 The experimental and simulated (solid line) bode plots for electrochemical cell at OCV in different ratios of HF/DMSO....... 89

Figure 2.18 Equivalent circuit model used for fitting the EIS data........................ 90

Figure 3.1 Representative SEM images of TiO$_2$ nanotube formation in 0.5-wt% HF/EG system at 20-60V for all the ratios (1:1, 1:5, 1:10, & 1:15)... 102

Figure 3.2 SEM images of TiO$_2$ nanotube formation in 0.5-wt% HF/EG system at 80-200V for all the ratios (1:1, 1:5, 1:10, & 1:15).............................. 103

XIX
Figure 3.3 Variation of pore diameter and tubular length vs. EG content in 0.5-wt% HF/EG system at different voltages... 104

Figure 3.4 SEM images of TiO$_2$ nanotube formation in 2-wt% HF/EG system at 20-60V for all the ratios (1:1, 1:5, 1:10, & 1:15).. 107

Figure 3.5 Representative SEM images of TiO$_2$ nanotube formation in 2-wt% HF/EG system at 80-200V for all the ratios (1:1, 1:5, 1:10, & 1:15).. 108

Figure 3.6 Variation of pore diameter and tubular length vs. EG content in 2-wt% HF/EG system at different voltages... 109

Figure 3.7 SEM images of TiO$_2$ nanotube formation in 5-wt% HF/EG system at 20-60V for all the ratios (1:1, 1:5, 1:10, & 1:15).. 110

Figure 3.8 SEM images of TiO$_2$ nanotube formation in 5-wt% HF/EG system at 80-200V for all the ratios (1:1, 1:5, 1:10, & 1:15).. 111

Figure 3.9 Variation of pore diameter and tubular length vs. EG content in 5-wt% HF/EG system at different voltages... 112

Figure 3.10 Representative SEM images of TiO$_2$ nanotube formation in 7-wt% HF/EG system at 20-60V for all the ratios (1:1, 1:5, 1:10, & 1:15).. 113

Figure 3.11 Representative SEM images showing the lateral view of TiO$_2$ nanotubes obtained at different anodization conditions for 24 hours....................... 116

Figure 3.12 The experimental and simulated Bode plots for electrochemical cell at OCV.. 118

Figure 3.13 The experimental and simulated Bode plots for electrochemical cell at OCV.. 118

Figure 3.14 19F spectra of HF/EG system at different volume ratios...................... 121

Figure 3.15 19F diffusion measurements of HF/EG system at different volume ratios with corresponding bare HF ... 123

Figure 3.16 1H Self Diffusion Coefficient (CH_2) (m2/s).. 123

Figure 3.17 1H Self Diffusion Coefficient (OH+H$_2$O) (m2/s).. 124

Figure 3.18 Schematic representation of Ti anodization... 125

Figure 4.1 Schematic representation of steps involved in the two-step anodization process.. 139
Figure 4.2 Representative SEM images of Ti and nanotubes formed in HF/DMSO electrolyte ... 140

Figure 4.3 SEM images of nanostructures formed in 0.5-wt% HF/EG system aged at different voltages by varying the HF/EG ratio 141

Figure 4.4 SEM images of nanostructures formed in 2-wt% HF/EG system aged at different voltages by varying HF/EG ratios 143

Figure 4.5 SEM images of nanostructures formed in 5-wt% HF/EG system aged at different voltages by varying HF/EG ratios 144

Figure 4.6 SEM images of honeycomb-like HF/EG electrolyte aged at 20V 1:10 in 2-wt% HF ... 145

Figure 4.7 Schematic representation of formation mechanism of free standing TiO₂ nanotubes and porous structures .. 147

Figure 4.8 Representative XRD and EDAX spectra of hierarchical nanostructures developed through two step anodization 152

Figure 4.9 Schematic representation of back-side illuminated DSSCs 154

Figure 4.10 SEM images of honeycomb-like structures formed in 0.5-wt% HF/EG system aged at (a) 100V in 1:5, (b) 200V in 1:10 HF/EG ratio ... 156

Figure 4.11 I-V characteristic of conventional free standing TiO₂ nanotubes with honeycomb-like (HC) nanostructures 157

Figure 4.12 Surface area analysis of nanopolished Ti surface with conventional nanotubes and different honeycomb-like nanostructures 159