LIST OF FIGURES

Figure 1.1 Schematic representation of the research strategy employed in this thesis work ... 4

Figure 1.2 Schematic representation of the tissue engineering concept 8

Figure 1.3 Schematic representation of cell interaction with nano & micro scale structures ... 15

Figure 1.4 Diagrammatic representation of laboratory scale electrospinning setup ... 17

Figure 2.1.1 Custom designed electrospun scaffold holder 48

Figure 2.3.1 Custom designed dye for developing HAp discs 59

Figure 2.3.2 Nude mice housing in the animal facility 65

Figure 2.3.3 The flowchart of experimental groups for in vivo study 66

Figure 3.1.1 SEM images of PCL scaffolds with micro-fibrous and nano-fibrous structure ... 71

Figure 3.1.2 Protein adsorption on PCL nano-fibrous and micro-fibrous scaffolds ... 73

Figure 3.1.3 Isolation and primary culture of hMSCs ... 75

Figure 3.1.4 Osteogenic differentiation of hMSCs ... 76

Figure 3.1.5 Adipogenic differentiation of hMSCs ... 76

Figure 3.1.6 Chondrogenic differentiation of hMSCs .. 77

Figure 3.1.7 FACS analysis of isolated hMSCs. .. 78

Figure 3.1.8 SEM images of hMSC adhesion and spreading on micro fibrous scaffolds ... 79

Figure 3.1.9 Temporal evaluation of hMSC adhesion and spreading on nano-fibrous scaffolds ... 80

Figure 3.1.10 Cell infiltration on nano and micro scaffolds 81

Figure 3.1.11 hMSC proliferation on PCL nano-fibrous scaffolds. 82

Figure 3.1.12 The Alkaline Phosphatase (ALP) activity in hMSCs on nano-fibrous scaffolds ... 84
Figure 3.1.13 Real-time PCR analysis of the expression of ALP and osteocalcin gene. ...85
Figure 3.1.14 Mineralization by hMSCs on nano-fibrous scaffolds86
Figure 3.1.15 Qualitative and quantitative evaluation of mineralization of hMSCs on nano-fibrous scaffolds87
Figure 3.2.1 Morphology and particle size of gelatin nanoparticles96
Figure 3.2.2 SEM images of PCL and PCL_nG scaffolds at two different magnifications ...97
Figure 3.2.3 Representative SEM images of PCL_nG scaffolds containing 17.5 wt% and 20 wt% ...98
Figure 3.2.4 Spectroscopic and thermal characterization of nano-fibrous scaffolds ..98
Figure 3.2.5 Wettability of the nano-fibrous scaffolds99
Figure 3.2.6 In vitro degradation of the scaffolds100
Figure 3.2.7 Continuous and discontinuous nano-fibers in the scaffolds101
Figure 3.2.8 Representative scanning electron micrographs of hMSC adhesion and spreading on nano-fibrous scaffolds at 3h of incubation. 102
Figure 3.2.9 Representative confocal microscopic images of hMSCs on nano-fibrous scaffolds showing the difference in spreading and actin filament formation at 24 hrs of incubation103
Figure 3.2.10 Viability of hMSCs on the developed scaffolds104
Figure 3.2.11 Proliferation of hMSCs on the developed scaffolds evaluated using pico green assay ..105
Figure 3.2.12 Osteogenic differentiation of hMSCs on the developed scaffolds ..107
Figure 3.2.13 Qualitative and semi-quantitative evaluation of mineralization of hMSCs on the developed nano-fibrous scaffolds using alizarin red staining ...108
Figure 3.3.1 Macroporous ceramic discs ..117
Figure 3.3.2 Micro-fibrous polymeric discs. .. 118
Figure 3.3.3 The morphology and actin filament organization of hMSCs on tissue culture plate and electrospun nano-fibers. 119
Figure 3.3.4 Characterization of HUVECs and pericytes.............................. 120
Figure 3.3.5 Osteogenesis and capillary formation in vitro.......................... 120
Figure 3.3.6 In vitro capillary formation of HUVECs and pericytes............. 121
Figure 3.3.7 In vitro vascularization in the angiogenic zones. 122
Figure 3.3.8 Development of oestrogenic zones... 123
Figure 3.3.9 The 3D layered constructs .. 124
Figure 3.3.10 Compressive strength of the construct 125
Figure 3.3.11 Subcutaneous implantation of the constructs. 125
Figure 3.3.12 Viability of MSCs on angiogenic zones................................. 126
Figure 3.3.13 Vascularization and integration of the construct with the host tissue .. 127
Figure3.3.14 Calcium phosphate ratio in the nano-fibers of the implanted constructs ... 128
Figure 3.3.15 Histological images showing the vascularization and tissue in-growth in vivo ... 129
Figure 3.3.16 Semi-quantitative analysis of the vascularization of the constructs .. 130
Figure 3.3.17 Through-the-thickness vascularization of the layered construct .. 131

LIST OF TABLES
Table 3.1.1 Primers used for the real time PCR ... 85
Table 3.2.1 Gelatin concentration in the nanoparticle suspension 96
Table 3.2.2 Fiber diameters of PCL and PCL_nG scaffolds 97
Table 3.3.1 Experimental groups for in vivo study 129