Contents

List of Tables... i
List of Figures.. ii - iii
List of Abbreviations... iv - viii
Preface... 1 - 6
Materials and Methods... 7 - 30

Chapter 1
Curcumin and its derivatives prevent iron-induced lipid peroxidation in a teleost *Anabas testudineus* (Bloch).............. 31 - 43

Chapter 2
In vivo protective effect of dietary curcumin in fish
Anabas testudineus (Bloch) ... 44 - 55

Chapter 3
Effect of curcumin on renal, intestinal and branchial tissues...... 56 - 77

Chapter 4
Effect of curcumin on liver, intestine and kidney of
Anabas testudineus - Light and electron microscopic study......... 78-114

Chapter 5
Protective effect of dietary curcumin on haematological parameters of *Anabas testudineus* (Bloch) with a special note on DNA fragmentation assay on hepatocytes......................... 115-128
Chapter 6

Dietary curcumin accelerates growth through improving
the physiological status of *Anabas testudineus* (Bloch) 129-153

Chapter 7

Curcumin analogue inhibits lipid peroxidation in a
freshwater teleost, *Anabas testudineus* (Bloch)—an *in vitro* and
in vivo study... 154-166

Conclusions... 167-168

Bibliography and References... 169-194

Publications/papers presented.. 195-196
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Effect Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Effect of curcuminoids on TBARS and CD- in vitro</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Effect of curcumin on SOD, CAT, GPX and GR- short-term in vivo</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Effect of curcumin on serum parameters-3 months</td>
<td>73</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Effect of curcumin on renal, intestinal and branchial TBARS</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Effect of curcumin on renal, intestinal and branchial GSH</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Effect of curcumin on renal, intestinal and branchial protein content</td>
<td>76</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Effect of curcumin on serum Na⁺, K⁺ and Ca²⁺ ions</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Effect of curcumin on surface area of hepatopancreas and MMC</td>
<td>114</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Effect of curcumin on haematological parameters</td>
<td>126</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Cytometry of control and curcumin treated erythrocytes</td>
<td>127</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Effect of curcumin on micronucleus frequency in the blood</td>
<td>128</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Effect of curcumin on growth parameters o- 3 months</td>
<td>149</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Effect of curcumin on growth parameters - after 6 months</td>
<td>150</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Effect of curcumin on muscle lipid peroxidation- 3 months</td>
<td>151</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Effect of curcumin on lipid peroxidation and RNA content- 6 months</td>
<td>152</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Effect of curcumin on serum markers of hepatic and renal - 6 months</td>
<td>153</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>The percentage inhibition of liver TBARS by salicylcurcumin - in vitro</td>
<td>164</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>The percentage inhibition of brain TBARS by salicylcurcumin - in vitro</td>
<td>165</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Effect of salicylcurcumin on fish lipid peroxidation- In vivo</td>
<td>166</td>
</tr>
<tr>
<td>List of Figures</td>
<td>Page No.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Fig. (i) Structure of curcuminoids used in the present study</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Fig. (ii) Structure of salicylcurcumin</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Fig. (iii) Experimental fish- Anabas testudineus (Bloch)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Fig. 1.1 Effect of curcuminoids on hepatocyte SOD in vitro</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Fig. 1.2 Effect of curcuminoids on hepatocyte CAT in vitro</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Fig. 2.1 Effect of curcumin on liver protein, GSH & TBARS in vivo</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Fig. 2.2 Effect of curcumin on SOD, CAT GPx & GR- native PAGE</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Fig. 2.3 Western blot analysis of liver SOD activity- long term in vivo</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Fig. 3.1 Effect of curcumin on renal, intestinal and branchial ATPases</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Fig. 3.2 Effect of curcumin on renal, intestinal and branchial ion contents</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Fig. 3.3 Effect of curcumin on renal, intestinal and branchial SOD & CAT</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Fig. 3.4 The western blot analysis of renal intestinal and branchial SOD</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Fig. 3.5 Effect of curcumin on branchial epithelium- SEM study</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.1 Structure of liver of a control Anabas testudineus</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.2 Structure of hepatopancreas</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.3 Association of macrophage melanocytes with hepatopancreas</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.4 MMC and hepatopancreas-histochemistry</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.5 TEM images of Anabas liver</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.6 Control and treated liver showing portal vein and a few capillaries</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.7 TEM images of control and treated hepatopancreas</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Fig. 4.8 TEM images of a hepatopancreatic cell of control and treated fish</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4.9 A densely nucleated structure in the treated liver and a HP duct........ 101
Fig. 4.10 Structure of a control intestine (H & E)................................. 102
Fig. 4.11 Ultrastructure of control villi epithelium................................. 103
Fig. 4.12 Effect of curcumin on villi epithelium................................. 104
Fig. 4.13 Intestinal villi epithelium of control and treated fish............... 105
Fig. 4.14 Structure of *Anabas* kidney showing kidney tubules.............. 106
Fig. 4.15 Ultrastructure of an inter-renal cell.................................... 107
Fig. 4.16 Control and treated kidney showing non-encapsulated and free MMCs. 108
Fig. 5.1 Blood cells of *Anabas testudineus*.................................. 123
Fig. 5.2 The types of micronuclei and binuclei scored.......................... 124
Fig. 5.3 Control and treated hepatocyte DNA fragmentation assay.......... 124
Fig. 6.1 Effect of curcumin on feed consumption and assimilation - 3 & 6 months .. 140
Fig. 6.2 Effect of curcumin on Feed Conversion Efficiency 141
Fig. 6.3 Effect of curcumin on Feed Assimilation Efficiency................... 142
Fig. 6.4 Effect of curcumin on serum lipid profile- 3 & 6 months............. 143
Fig. 6.5 Effect of curcumin on ATPases activity - 3 months 144
Fig. 6.6 Effect of curcumin on ion content- 3 months.......................... 145
Fig. 6.7 Effect of curcumin on muscle RNA content - 6 months................. 146
Fig. 7.1 Effect of curcumin (nat & syn) on liver SOD & CAT 161
Fig. 7.2 Effect of curcumin (nat & syn) on liver GPx and GR activity........ 162
List of Abbreviations

12L: 12D - 12 hour light: 12 hour dark
ALT - Alanine Aminotransferase
ANSA - 1-Amino 2-naphto 4-sulphonic acid
APS - Ammonium Persulphate
AST - Aspartate Aminotransferase
ATP - Adenosine triphosphate

A. testudineus - *Anabas testudineus*

BSA - Bovine Serum Albumin
BW - Body weight
Ca$^{2+}$ - Calcium ion
CaCl$_2$ - Calcium chloride
CAT - Catalase
CCl$_4$ - Carbon tetra chloride
CD - Conjugated Dienes
CFTR - Cystic Fibrosis Transmembrane Conductance Regulator
CS - Cell suspension
CUR Box - Curcumin–Boron–Oxalic acid Complex
CURI - Curcumin I,
CURII - Curcumin II
CURIII - Curcumin III
DH - Deep Hole
DMSO - Dimethyl Sulphoxide
DNA - Deoxyribo Nucleic Acid
DPNH - 2, 4 Dinitrophenyl Hydrazine
DTNB - 5, 5-Dithiobis Nitrobenzoic acid
EDTA - Ethylene Diamine Tetra Acetate
EL - Erythrocyte-length
ES - Erythrocyte-size
EW - Erythrocyte-width
FAE - Feed Assimilation Efficiency
FCE - Feed Conversion efficiency
FeSO₄ - Ferrous sulphate
GPx - Glutathione Peroxidase
GR - Glutathione Reductase
GSH - Glutathione (Reduced)
GSSG - Glutathione (oxidized)
H & E - Haematoxyline-Eosine
H₂O₂ - Hydrogen peroxide
HDL - High Density Lipoprotein
HNO₃ - Nitric acid
K⁺ - Potassium ion
KCl - Potassium chloride
KDa - Kilo Dalton
LDL - Low Density Lipoprotein
MCH - Mean Corpuscular Haemoglobin
MCHC - Mean Corpuscular Haemoglobin Concentration
MCV - Mean Corpuscular Volume
MDA - Malondialdehyde
MgCl₂ - Magnesium chloride
MM - Melanocyte Macrophage
MMCs - Melanocyte-Macrophage Centres
MN - Micronucleus
MTT - Methyl Thiazol Tetrazolium
Na⁺ - Sodium ion
Na⁺-K⁺ ATPase - Na⁺-K⁺ dependent Adenosine Triphosphatase
NaCl - Sodium chloride
NADH - Nicotinamide Adenosine Dinucleotide (reduced)
NADPH - Nicotinamide Adenosine Dinucleotide Phosphate (reduced)
NaN₃ - Sodium azide
NaOH - Sodium hydroxide
Nat - Natural curcumin
NL - Erythrocyte-nuclear length
NW - Erythrocyte-nuclear width
O$_2^-$ - Superoxide radical
PAS - Periodic Acid - Schiff's
PCs - Pavement Cells
PUFA - Poly Unsaturated Fatty Acids
RER - Rough Endoplasmic Reticulum
RNA - Ribonucleic Acid
ROS - Reactive Oxygen Species
SB - Shallow Basin
SDS-PAGE - Polyacrylamide Gel Electrophoresis
SDS - Sodium Dodecyl Sulphate
SEM - Scanning Electron Microscopy
SERCA - Sarco(endo)plasmic Reticular Calcium ATPase
SGR - Specific Growth Ratio
SOD - Superoxide Dismutase
Syn - Synthetic Curcumin
TBARS - Thiobarbituric acid Reactive Substances
TBA - Thiobarbituric acid
TBO - Toluidine Blue O
TC - Total Cholesterol
TCA - Trichloro Acetic acid
TCM - Tissue Culture Medium
TEM - Transmission Electron Microscopy
TG - Triglycerides
TLC - Thin Layer Chromatography
TTBS - Tween-Tris buffered Saline
VLDL - Very Low Density Lipoprotein
WBC - White Blood Corpuscle
WC - Wavy Convex