Table 1 Review on studies on prevalence of MDR Gram positive bacteria.
Table 2 Review on studies on prevalence of MDR Gram negative bacteria.
Table 3 Inducible clindamycin resistance in S. aureus.
Table 4 Review of literature on antibacterial screening of medicinal plants.
Table 5 Literature survey of antibacterial efficacies of 70 ethnomedicinal plants used.
Table 6 Review on five important medicinal plants used in this study.
Table 7 Synergistic effect of plant extract and antibiotics.
Table 8 Review of literature on GC-MS and host toxicity studies of W. fruticosa.
Table 9 Occurrence of S. aureus isolates according to source of isolation.
Table 10 Occurrence of S. aureus strains in different clinical samples from community and nosocomial sources.
Table 11 Occurrence of vancomycin resistant S. aureus (VRSA) and vancomycin intermediate S. aureus (VISA) strains among MRSA strains from community and nosocomial sources.
Table 12 Percentages of resistance of S. aureus to individual antibiotics of aminoglycoside group.
Table 13 Percentages of resistance of S. aureus to individual antibiotics of β-lactam group.
Table 14 Percentages of resistance of S. aureus to individual group of antibiotics.
Table 15 Percentage of resistance of S. aureus to stand-alone antibiotics.
Table 16 Detection of MIC values in MSSA, MRSA, VISA and VRSA.
Table 17 Occurrence of inducible clindamycin resistant isolates as D-test positives in total S. aureus strains in different clinical samples.
Table 18 Univariate analysis of D-test positive and D-test negative isolates of S. aureus.
Table 19 Percentage of resistance of S. aureus to 17 antibiotics of various groups with both hospital acquired and community acquired strains (n=278=100%).
Table 20 Patterns of sensitivity and resistance to antibiotics in strains of S. aureus to erythromycin and clindamycin during D-test.
Table 21 Occurrence of E. faecalis isolates according to source of isolation.
Table 22 Occurrence of E. faecalis strains in different clinical samples from community and nosocomial sources.
Table 23 Percentages of resistance of *E. faecalis* to individual antibiotics of aminoglycoside group.

Table 24 Percentages of resistance of *E. faecalis* to individual antibiotics of β-lactam group.

Table 25 Percentages of resistance of *E. faecalis* to individual group of antibiotics.

Table 26 Percentage of resistance of *E. faecalis* to stand-alone antibiotics.

Table 27 Detection of MIC values in VSE and VRE.

Table 28 Occurrence of inducible clindamycin resistant strains using ‘erythromycin-resistant-clindamycin- sensitive’ *E. faecalis* strains among vancomycin sensitive and vancomycin resistant strains, isolated from clinical samples.

Table 29 Types of phenotypes among vancomycin sensitive and vancomycin resistant strains in 265 *E. faecalis* concerning to resistance to erythromycin and clindamycin.

Table 30 Univariate analysis of D-test positive and negative 265 strains of *E. faecalis*, influenced by six hospital variables.

Table 31 Resistance of 265 *E. faecalis* strains from hospital and community acquired sources to 14 antibiotics of 7 groups.

Table 32 Distribution of pathogenic bacteria in different sectors of the hospital in 15 months.

Table 33 Isolation and maintenance of clinically isolated bacteria with colony characteristics and biochemical test results.

Table 34 Biochemical identification of the isolated Gram negative bacteria.

Table 35 Carbohydrate fermentation tests of different Gram negative bacteria.

Table 36 Distribution of ESBL producers in isolated bacteria.

Table 37 Percent resistance of all clinically isolated bacteria to penicillin and third generation cephalosporins group.

Table 38 Percentage of resistance of clinically isolated bacteria to β-lactamase inhibitor and fluoroquinolone group.

Table 39 Percent resistance of clinically isolated Gram negative bacteria to amino-glycoside group.

Table 40 MIC values between the ESBL positive strains in all clinically isolated bacteria with third generation cephalosporins.

Table 41 Ethno-medicinal uses of the 70 plants used by aborigines of Odisha.

Table 42 Antibiogram of the selected clinically isolated MDR pathogenic bacteria.
Table 43 Screening of 70 medicinal plants against the isolated 8 MDR pathogenic bacteria by agar well diffusion method; zone of inhibition in mm.

Table 44 Screening of 15 bark extracts out of 70 medicinal plants against the isolated 8 MDR pathogenic bacteria by agar well diffusion method; Size of zone of inhibition in mm.

Table 45 Qualitative phytochemical analyses of aqueous and ethanolic leaf extracts of the 70 medicinal plants.

Table 46 Antibacterial assay by agar-well diffusion method of 8 cold solvent leaves extract of *C. paniculatus* against 8 MDR bacterial strains (zone of inhibition in mm).

Table 47 MIC and MBC values of the best 3 cold bioactive leaf extract of *C. paniculatus* against isolated MDR strains bacteria (mg/mL).

Table 48 Phytochemical analysis of the 3 best active cold extracts of *C. paniculatus*.

Table 49 Antibacterial assay by agar-well diffusion method of 8 hot solvent leaves and bark extracts of *C. paniculatus* against 8 MDR bacterial strains (zone of inhibition in mm).

Table 50 MIC and MBC values of the best 3 hot bioactive leaf extract of *C. paniculatus* against isolated MDR strains (mg/mL).

Table 51 Phytochemical analysis of the 3 best active hot extracts of *C. paniculatus*.

Table 52 Antibacterial assay by agar-well diffusion method of 8 cold solvent leaf-extracts of *L. camara* against MDR bacterial strains (zone of inhibition in mm).

Table 53 MIC and MBC of 2 bioactive cold leaf-extracts of *L. camara* against MDR bacterial strains (mg/mL).

Table 54 Phytochemical analysis of the 2 best active cold extracts of *L. camara*.

Table 55 Antibacterial assay by agar-well diffusion method of 8 hot solvent leaf-extracts of *L. camara* against MDR bacterial strains (zone of inhibition in mm).

Table 56 MIC and MBC of 3 best active hot-extracts of *L. camara* against MDR bacterial strains (mg/mL).

Table 57 Phytochemical analysis of the 3 best active hot extracts of *L. camara*.

Table 58 Antibacterial assay by agar-well diffusion method of 8 cold solvent leaves/bark extracts of *O. indicum* against bacterial strains (zone of inhibition in mm).

Table 59 MIC and MBC values of the best 3 cold bioactive leaves and bark extracts of *O. indicum* against isolated MDR strains bacteria (mg/mL).

Table 60 Phytochemical analysis of the 3 best active cold extracts of *P. santalinus*.
Table 61 Antibacterial assay by agar-well diffusion method of 8 hot solvent leaves/bark extracts of *O. indicum* against bacterial strains (zone of inhibition in mm).

Table 62 MIC and MBC values of the best 3 cold bioactive leaves and bark extracts of *O. indicum* against isolated MDR strains bacteria (mg/mL).

Table 63 Phytochemical analysis of the 3 best active hot extracts of *O. indicum*.

Table 64 Antibacterial assay by agar-well diffusion method of 8 cold solvent leaves and bark extracts of *P. santalinus* against 8 MDR bacterial strains (zone of inhibition in mm)

Table 65 MIC and MBC values of the best 3 cold bioactive leaves and bark extracts of *P. santalinus* against isolated MDR strains bacteria (mg/mL)

Table 66 Phytochemical analysis of the 3 best active cold extracts of *P. santalinus*.

Table 67 Antibacterial assays by agar-well diffusion method of 8 hot solvent leaves and bark extracts of *P. santalinus* against 8 MDR bacterial strains (zone of inhibition in mm).

Table 68 MIC and MBC values of the best 3 hot bioactive leaves and bark extracts of *P. santalinus* against isolated strains bacteria (mg/mL)

Table 69 Phytochemical analysis of the 3 best active hot extracts of *P. santalinus*.

Table 70 Antibacterial assay by agar-well diffusion method of 8 cold solvent leaf-extracts of *W. fruticosa* against MDR bacterial strains (zone of inhibition in mm).

Table 71 MIC and MBC a value of the best 3 cold bioactive leaf extracts of *W. fruticosa* against isolated MDR strains bacteria (mg/mL).

Table 72 Phytochemical analysis of the 3 best active cold extracts of *W. fruticosa*.

Table 73 Antibacterial assay by agar-well diffusion method of 8 hot solvent leaf-extracts of *W. fruticosa* against MDR bacterial strains (zone of inhibition in mm).

Table 74 MIC and MBC of 3 best active hot-extracts of *W. fruticosa* against MDR bacterial strains (mg/mL)

Table 75 Phytochemical analysis of the 3 best active hot extracts of *W. fruticosa*.

Table 76 Analysis of proximate physicochemical properties of *W. fruticosa*.

Table 77 Antibacterial assay by agar-well diffusion method of hot solvent leaf-fractions of *W. fruticosa* against MDR strains of bacteria as diameter size of zone of inhibition (mm).

Table 78 MIC and MBC of the best bioactive n-butanol fraction of *W. fruticosa* against MDR bacterial strains (mg/mL).

Table 79 Phyto-components identified in n-butanol fraction of leaves of *W. fruticosa*.
Table 80 Probit transformations of percent lethality values during crude methanol leaf-extract toxicity to human lymphocytes growing in DMEM, assessed by MTT assay.

Table 81 Inhibition zone (IZ) values of different concentration of methanol leaf-extract of *W. fruticosa* against MDR *S. aureus*, by agar well diffusion method.

Table 82 Interaction of methanol extract of *W. fruticosa* (800 µg/mL) and vancomycin (30 µg/mL) against *S. aureus* strain.

Table 83 Interaction of Methanol extract of *W. fruticosa* 800 µg/mL and vancomycin 50 µg/mL against *S. aureus* strain to know the MBC and FBC value of the drugs.