List of Figures

Figure 1.1 Different applications of biomaterials.

Figure 1.2 Different types of polysaccharides based on source

Figure 1.3 Chemical structure of TKP

Figure 1.4 Pictographic representation of the extraction of Tamarind Kernel Powder (TKP) from the plant *Tamarindus indica*.

Figure 2.1 Photographic image of Type-II Apparatus (Electrolab dissolution tester, EDT-08Lx).

Figure 3.1 Photographic images showing the appearance of reaction mixture after reaction has stopped.

Figure 3.2 Gravimetrically determined grafting yield (%) for hydrogels with different mole composition of TKP and AA.

Figure 3.3 SDS-PAGE showing the TKP based matrix (TKP-g-AA at 1:5 mole composition) was free from protein after grafting however pure TKP contains proteins within it.

Figure 3.4 (a) FTIR spectra of different hydrogels.

Figure 3.4 (b) Extent of grafting with increase in mole composition of AA

Figure 3.5 The hydro-swelling kinetics of different hydrogels showing increase in hydrophilicity with increasing grafting extent of AA on to the TKP back bone.

Figure 3.6 Variation of zeta potential value of hydrogel with different mole composition of AA and at different pH.

Figure 3.7 a) XRD pattern of AA grafted TKP-based hydrogel, b) Percent crystallinity of hydrogels with different mole composition of AA.

Figure 3.8 FE-SEM images of TKP-g-AA

Figure 3.9 SEM images of TKP-g-AA (1:5 mole ratio)

Figure 3.10 Cell viability (%) of Saos-2 cells on surfaces of different matrices.

Figure 3.11 TKP-AA surface is biocompatible for different sensitive cells.
Figure 3.12 TKP-AA surface is biocompatible for the adhesion and growth of pre-osteoclast cells.

Figure 3.13 Live Cell Images shows preferential attachment of macrophage RAW 264.7 cells (bone precursor) on TKP:AA hydrogel.

Figure 3.14 TKP-AA surface is biocompatible for the adhesion and growth of pre-osteoblast cells.

Figure 3.15 TKP-AA provides better adhesion- and spreading-compatible surface for primary bone-marrow derived preosteoclasts.

Figure 3.16 (a) Encapsulation efficiency of different hydrogel, (b) *In vitro* cumulative drug release from different TKP-g-AA hydrogel matrix (c) Initial burst release pattern within 20 mins.

Figure 4.1 Photographic images showing the reaction mixtures with different mole ratios of CMT: HEMA as indicated respectively.

Figure 4.2 Gravimetrically determined grafting yield (%) of the hydrogels with different mole composition of CMT and HEMA.

Figure 4.3 SDS-PAGE image showing protein free hydrogel matrices were formed by grafting of monomer in contrast to pure CMT which retains its protein content post purification.

Figure 4.4 UV spectra of hydrogels with different mole ratio of CMT to HEMA.

Figure 4.5 FTIR spectra of hydrogels of different CMT: HEMA compositions.

Figure 4.6 The grafting profile as calculated from FTIR for hydrogels with increasing HEMA mole ratio to CMT.

Figure 4.7 Swelling kinetics of hydrogels with different mole ratios of CMT to HEMA.

Figure 4.8 Zeta potential value of CMT-g-HEMA hydrogel with different mole ratio of their respective composition.

Figure 4.9 a) X-Ray Diffraction pattern for different hydrogels, b) Crystallinity (%) of different matrices.
Figure 4.10 Thermogravimetric analysis (TGA) thermograms showing degradation profile for different matrices

Figure 4.11 SEM images showing surface morphology (a-b) Pure CMT & (c-d) CMT-g-HEMA (1:10).

Figure 4.12 Cell viability of CMT-g-HEMA hydrogel with different mole composition of HEMA.

Figure 4.13 CMT: HEMA (1:10) hydrogel is biocompatible for bone precursor cells

Figure 4.14: Specific adhesion of cells on the hydrogel surface.

Figure 4.15 Adhesion and growth of osteogenic cells.

Figure 4.16 Biocompatibility of Human Umbilical Vein Endothelial Cells on CMT: HEMA (1:10) surface.

Figure 4.17 a) Encapsulation efficiencies of different matrices, b) Dissolution kinetic study showing controlled release of hydrophilic drug from different hydrogel matrices.

Scheme 4.1 Proposed mechanism for grafting of 2-HEMA on CMT Polysaccharide

Figure 5.1 Gravimetrically determined grafting yield (%) of ternary hydrogels with different mole compositions of AA and HEMA.

Figure 5.2 FTIR spectra of different polysaccharide based matrix. Transmittance vs. Wave number (in cm\(^{-1}\)).

Figure 5.3 a) Swelling study showing percent swelling vs. time (in minutes) for different hydrogels. b) Enlarged view of highlighted area showing swelling variation of different hydrogel within first 400 mins.

Figure 5.4 a) XRD pattern of polysaccharide based matrices with compositional variation in dual grafted monomers b) Crystallinity (%) of different matrices.

Figure 5.5 Zeta potential value for the different polysaccharide based matrixes.

Figure 5.6 SEM images showing pattern of pore structure of ternary hydrogels.

Figure 5.7 MTT Assay for different hydrogels with Soas-2 cell showing the cell viability as a function of material.
Figure 5.8 Growth of RAW 264.7 cells on ternary hydrogels.

Figure 5.9 Shown are the confocal images of Saos-2 cells grown on CMT:AA:HEMA ternary hydrogel surface. a) Saos-2 cells grown on glass surface are shown, b) S1 hydrogel c) S3 hydrogel d) S4 hydrogel.

Figure 5.10 a) Encapsulation efficiency of different ternary hydrogels, b) *In vitro* release kinetics of paracetamol from different hydrogel matrices.

Figure 6.1 UV-visible spectra of silver with concentration of silver nitrate (1 to 5mM).

Figure 6.2 The Dynamic light scattering measurement shows a monodispersed size distribution pattern of AgNPs.

Figure 6.3 FESEM images of CMT capped AgNPs shows a nearly uniform sized AgNPs.

Figure 6.4 TEM images of AgNPs in different magnification. a-d) TEM images of AgNPs in low and high magnification, e-f) High resolution TEM image demonstrating the lattice pattern and the presence of CMT-cap (indicated by green arrows) on the AgNP.

Figure 6.5 EDX spectra showing silver nanoparticle absorbs at 3eV characteristic to AgNPs.

Figure 6.6 Selected Area Electron Diffraction (SAED) pattern of AgNPs.

Figure 6.7 a) UV-visible spectra showing unchanged SPR for silver nanoparticles before and after six months of synthesis of AgNPs, b) Zeta potential as measured by DLS showing a value of -36mV which is well within the range for higher stability.

Figure 6.8 Anti-microbial efficacy of CMT-capped AgNPs. a) Concentration-dependent growth of Gram negative *E. coli* and Gram positive *B. subtilis* on LB agar plates. b) CFU assay showing dose-dependent growth inhibition of *E. coli* and *B. subtilis*.

Figure 6.9 CMT-capped AgNP are effective against biofilm formation.

Figure 6.10 Bio-compatibility of CMT-capped AgNPs to mammalian cell. Shown are the confocal images of RAW 264.7 cells treated with CMT-capped AgNPs for different concentration and time duration followed by staining for actin cytoskeleton (green), microtubule (red) and DNA (blue).
Figure 6.11 The percentage of cell viability assessed by MTT assay is presented as bar-graph (N=4).

Figure 6.12 SEM images showing untreated bacteria *E coli* and *B subtilis* and AgNP treated bacterial cells.

Figure 7.1 a) Sustained release of paracetamol by ternary hydrogels for upto 20 hours, b) Swelling percentage of ternary hydrogels.

Figure 7.2 Comparative release of paracetamol from different ternary hydrogels.

Figure 7.3 Anti-microbial efficacy of CMT-capped AgNPs. a-b) CMT-capped AgNP concentration-dependent growth inhibition of Gram negative *E. coli* and Gram positive *B. subtilis* on LB agar plates, c) Chemically synthesized (NaBH₄-reduced) AgNPs are ineffective against the growth of *E. coli* and *B. subtilis* at the same concentrations.
List of tables

Table 1.1 Classification of polysaccharides

Table 2.1 Synthesis of ternary hydrogel

Table 2.2 Optimization parameters in synthesis of silver nanocomposite

Table 5.1 The characteristic peak of different hydrogels