Appendix A

Nonlinear Strain Terms \(\{ \tilde{\varepsilon}_{NL} \} \) and Thickness Coordinate Matrix as Appeared in General Mathematical Formulation

Nonlinear strain terms as shown in the Eq. (3.10)

\[
(e^4_1) = \left((u_x)^2 + (v_x)^2 + (w_x)^2 \right), \quad (e^4_2) = \left((u_y)^2 + (v_y)^2 + (w_y)^2 \right),
\]

\[
(e^6_1) = 2\left[u_w u_x + v_w v_x + w_w w_x \right], \quad (e^6_2) = 2\left[\phi u_x + \phi_2 v_x \right],
\]

\[
(e^8_1) = 2\left[\phi u_y + \phi_2 v_y \right], \quad (k_2^5) = 2\left[\phi_1 u_x + \phi_2 v_x - \frac{\phi_3}{R_1} w_x \right],
\]

\[
(k_2^5) = 2\left[\phi_1 u_y + \phi_2 v_y - \frac{\phi_3}{R_2} w_y \right], \quad (k_2^5) = 2\left[\phi_1 u_{y,y} + 2\phi_1 u_{x,y} + \phi_2 v_{y,y} - \frac{\phi_3}{R_1} w_{x,y} - \frac{\phi_3}{R_2} w_{y,y} \right],
\]

\[
(k_2^5) = 2\left[\phi_1 u_{y,y} + 2\phi_1 u_{x,y} + \phi_2 v_{y,y} - \frac{\phi_3}{R_1} w_{x,y} - \frac{\phi_3}{R_2} w_{y,y} \right], \quad (k_2^5) = 2\left[\phi_1 u_{x,x} + \phi_2 v_{x,x} - \frac{\phi_3}{R_1} w_{x,x} - \frac{\phi_3}{R_2} w_{y,x} \right],
\]

\[
(k_2^5) = 2\left[\phi_1 u_{x,x} + \phi_2 v_{x,x} - \frac{\phi_3}{R_1} w_{x,x} - \frac{\phi_3}{R_2} w_{y,x} \right], \quad (k_2^5) = 2\left[\phi_1 u_{x,y} + \phi_2 v_{x,y} - \frac{\phi_3}{R_1} w_{x,y} - \frac{\phi_3}{R_2} w_{y,y} \right],
\]

\[
(k_2^5) = 2\left[\psi_{x,x}\phi_1 + 2\phi_1 \psi_{x,y} + 2\phi_2 \psi_{y,y} + 2\phi_{x,y} \psi_{y,y} + 2\phi_{x,y} \psi_{y,y} - \frac{\psi_1}{R_1} w_{x,x} - \frac{\psi_2}{R_2} w_{x,y} + \frac{\phi_3}{R_1} \psi_{x,y} \right],
\]

\[
(k_2^5) = 2\left[\psi_{x,x}\phi_1 + 2\phi_1 \psi_{x,y} + 2\phi_2 \psi_{y,y} + 2\phi_{x,y} \psi_{y,y} + 2\phi_{x,y} \psi_{y,y} - \frac{\psi_1}{R_1} w_{x,x} - \frac{\psi_2}{R_2} w_{x,y} + \frac{\phi_3}{R_1} \psi_{x,y} \right],
\]

\[
(k_2^5) = 2\left[\psi_{x,x}\phi_1 + 2\phi_1 \psi_{x,y} + 2\phi_2 \psi_{y,y} + 2\phi_{x,y} \psi_{y,y} + 2\phi_{x,y} \psi_{y,y} - \frac{\psi_1}{R_1} w_{x,x} - \frac{\psi_2}{R_2} w_{x,y} + \frac{\phi_3}{R_1} \psi_{x,y} \right],
\]

\[
(k_1^7) = 2\left[u_{x}\theta_{x,x} + v_{x}\theta_{x,x} + \phi_{x,xx} \psi_{x,x} + \phi_{x,xy} \psi_{y,x} - \theta_{x}\frac{\omega_{x}}{R_1} w_{x,x} + \frac{\phi_3}{R_1} \psi_{x,x} \right],
\]
\[(k_2^2) = 2 \left[u_{1,y} \frac{\partial}{\partial x} + v_{1,y} \frac{\partial}{\partial y} + \phi_{1,y} \psi_{1,y} + \phi_{2,y} \psi_{2,y} - \frac{\theta_{2}}{R_2} \frac{\partial}{\partial x} w_{1,y} + \frac{\phi_{1} \psi_{2}}{R_2} \right], \]

\[(k_6^1) = 2 \left[u_{1,y} \frac{\partial}{\partial x} + v_{1,y} \frac{\partial}{\partial y} + \phi_{1,y} \psi_{1,y} + \phi_{2,y} \psi_{2,y} - \frac{\theta_{2}}{R_2} \frac{\partial}{\partial x} w_{1,y} + \frac{\phi_{1} \psi_{2}}{R_2} \right], \]

\[(k_6^3) = 2 \left[\theta_{1,x} \phi_{1} + \theta_{2,x} \phi_{2} + 2 \psi_{1,x} \theta_{1,y} + 2 \psi_{2,x} \theta_{2,y} + 3 \phi_{1,x} \theta_{1,y} + 3 \phi_{2,x} \theta_{2,y} \right], \]

\[(k_1^4) = 2 \left[\phi \theta_{1,y} + \phi \theta_{2,y} + 2 \psi \psi_{1,y} + 2 \psi \psi_{2,y} + 3 \psi \theta_{1,y} + 3 \psi \theta_{2,y} \right], \]

\[(k_2^1) = \left[\psi_{1,y}^2 + \psi_{2,y}^2 + 2 \phi_{1,x} \theta_{1,y} + 2 \phi_{2,y} \theta_{2,y} + \frac{\psi_{1}^2}{R_1} + \frac{2 \phi_{1} \theta_{1}}{R_1} \right], \]

\[(k_2^8) = \left[\psi_{1,y}^2 + \psi_{2,y}^2 + 2 \phi_{1,x} \theta_{1,y} + 2 \phi_{2,y} \theta_{2,y} + \frac{\psi_{2}^2}{R_2} + \frac{2 \phi_{2} \theta_{2}}{R_2} \right], \]

\[(k_6^1) = \left[\psi_{1,y} \psi_{1,y} + \psi_{2,y} \psi_{2,y} + 2 \theta_{1,x} \phi_{1} + 2 \theta_{2,x} \phi_{2} + 2 \theta_{1,x} \psi_{1,y} + 2 \theta_{2,x} \psi_{2,y} + \frac{2 \psi_{1} \psi_{2}}{R_1} + \frac{2 \phi_{1} \theta_{1}}{R_1} + \frac{2 \phi_{2} \theta_{2}}{R_2} \right], \]

\[(k_8^3) = 2 \left[2 \psi_{1,x} \theta_{1,y} + 2 \psi_{2,x} \theta_{2,y} + 2 \theta_{1,x} \psi_{1,y} + 2 \theta_{2,x} \psi_{2,y} + 2 \theta_{1,x} \theta_{1,y} + 2 \theta_{2,x} \theta_{2,y} + \frac{2 \psi_{1} \psi_{2}}{R_1} + \frac{2 \phi_{1} \theta_{1}}{R_1} + \frac{2 \phi_{2} \theta_{2}}{R_2} \right], \]

\[(k_8^1) = 2 \left[\psi_{1,x} \frac{\partial}{\partial x} + \psi_{2,x} \frac{\partial}{\partial y} + \psi_{1,y} \frac{\partial}{\partial x} + \psi_{2,y} \frac{\partial}{\partial y} + \frac{\psi_{1} \theta_{1}}{R_1} + \frac{\psi_{2} \theta_{2}}{R_2} \right], \]

\[(k_8^6) = 2 \left[\psi_{1,x} \frac{\partial}{\partial x} + \psi_{2,x} \frac{\partial}{\partial y} + \psi_{1,y} \frac{\partial}{\partial x} + \psi_{2,y} \frac{\partial}{\partial y} + \frac{\psi_{2} \psi_{1}}{R_2} + \frac{\psi_{2} \theta_{1}}{R_1} + \frac{\psi_{2} \theta_{2}}{R_2} \right], \]

\[(k_3^5) = 2 \left[3 \phi_{1,x} \psi_{1,y} + 3 \phi_{2,x} \psi_{2,y} \right], \]

\[(k_4^4) = 6 \left(\theta_{1,x} \psi_{1,y} + \theta_{2,x} \psi_{2,y} \right), \]

\[(k_1^{10}) = \left[\theta_{1,x}^2 + \theta_{2,x}^2 + \frac{\theta_{1}^2}{R_1} \right], \]

\[(k_2^{10}) = \left[\theta_{1,y}^2 + \theta_{2,y}^2 + \frac{\theta_{1}^2}{R_2} \right], \]

\[(k_6^{10}) = 2 \left[\theta_{1,x} \theta_{1,y} + \theta_{2,x} \theta_{2,y} + \frac{\theta_{1} \theta_{2}}{R_1 R_2} \right]. \]

\dots (A.1)
Other coupled terms appeared in the expressions of (A.1):

\[
\begin{align*}
\overline{u}_x &= \frac{\partial \overline{u}}{\partial x} + \frac{\overline{w}}{R_1} \overline{u}_y, \\
\overline{u}_y &= \frac{\partial \overline{u}}{\partial y} + \frac{\overline{w}}{R_{12}} \overline{v}_x, \\
\overline{v}_x &= \frac{\partial \overline{v}}{\partial x} + \frac{\overline{w}}{R_2} \overline{v}_y, \\
\overline{v}_y &= \frac{\partial \overline{v}}{\partial y} + \frac{\overline{w}}{R_{12}} \overline{w}_x, \\
\overline{w}_x &= \frac{\partial \overline{w}}{\partial x} - \frac{\overline{u}}{R_1}, \\
\overline{w}_y &= \frac{\partial \overline{w}}{\partial y} - \frac{\overline{v}}{R_2}.
\end{align*}
\]

\[
\phi_{1,x} = \frac{\partial \phi}{\partial x}, \quad \phi_{1,y} = \frac{\partial \phi}{\partial y}, \quad \phi_{2,x} = \frac{\partial \phi}{\partial x}, \quad \phi_{2,y} = \frac{\partial \phi}{\partial y}, \quad \psi_{1,x} = \frac{\partial \psi}{\partial x}, \quad \psi_{1,y} = \frac{\partial \psi}{\partial y},
\]

\[
\psi_{2,x} = \frac{\partial \psi_2}{\partial x}, \quad \psi_{2,y} = \frac{\partial \psi_2}{\partial y}, \quad \theta_{1,x} = \frac{\partial \theta}{\partial x}, \quad \theta_{1,y} = \frac{\partial \theta}{\partial y}, \quad \theta_{2,x} = \frac{\partial \theta_2}{\partial x}, \quad \theta_{2,y} = \frac{\partial \theta_2}{\partial y}.
\]

Linear and Nonlinear Thickness Coordinate Matrices as Appeared in Eq. (3.10)

\[
\mathbf{H}_L = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0 & z^3 & 0 & 0 & 0 & 0

0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0 & 0 & z^3 & 0 & 0

0 & 0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0 & 0 & z^3 & 0 & 0

0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0 & 0 & z^3 & 0 & 0

0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0 & 0 & z^3 & 0 & 0
\end{bmatrix}
\]

\[
\mathbf{H}_{NL} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0 & 0

0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0

0 & 0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0

0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0

0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & 0 & z^2 & 0 & 0 & 0

z^3 & 0 & 0 & 0 & 0 & z^4 & 0 & 0 & 0 & 0 & z^5 & 0 & 0 & 0 & 0 & z^6 & 0 & 0

0 & z^3 & 0 & 0 & 0 & 0 & z^4 & 0 & 0 & 0 & 0 & z^5 & 0 & 0 & 0 & 0 & z^6 & 0 & 0

0 & 0 & z^3 & 0 & 0 & 0 & 0 & z^4 & 0 & 0 & 0 & 0 & z^5 & 0 & 0 & 0 & 0 & z^6 & 0 & 0

0 & 0 & 0 & z^3 & 0 & 0 & 0 & 0 & z^4 & 0 & 0 & 0 & 0 & z^5 & 0 & 0 & 0 & 0 & z^6 & 0 & 0

0 & 0 & 0 & 0 & z^3 & 0 & 0 & 0 & 0 & z^4 & 0 & 0 & 0 & 0 & z^5 & 0 & 0 & 0 & 0 & z^6 & 0 & 0
\end{bmatrix}
\]

\ldots \quad (A.2)
Appendix B

Geometric Strain Vector and the Material Property Matrix Derivation

The evaluation steps of the geometric strain vector \(\{ \varepsilon_G \} \) and the material property matrix \([D_G] \) as appeared in Eq. 3.26 in Chapter 3, is linearized as follows using the steps in Cook et al. (2009):

\[
\{ \varepsilon_G \} = \frac{1}{2} \begin{bmatrix}
\left(\overline{u}_x \right)^2 + \left(\overline{v}_y \right)^2 + \left(\overline{w}_z \right)^2 \\
\left(\overline{u}_y \right)^2 + \left(\overline{v}_x \right)^2 + \left(\overline{w}_z \right)^2 \\
2 \left(\overline{u}_x \right) \left(\overline{u}_y \right) + \left(\overline{v}_x \right) \left(\overline{v}_y \right) + \left(\overline{w}_z \right) \left(\overline{w}_z \right)
\end{bmatrix}
\]

or, \(\{ \varepsilon_G \} = [H_G] \{ \varepsilon_G \} = [H_G] [A_G] \{ \beta_G \} \)

The values of \([A_G] \) and \(\{ \beta_G \} \) are

\[
[A_G] = \begin{bmatrix}
\left(u_x \right) + \left(v_y \right) + \left(w_z \right) \\
\left(u_y \right) + \left(v_x \right) + \left(w_z \right) \\
\left(u_x \right) \left(u_y \right) + \left(v_x \right) \left(v_y \right) + \left(w_z \right) \left(w_z \right)
\end{bmatrix}
\]

and \(\{ \beta_G \} = \begin{bmatrix}
u_x \\
v_y \\
v_x \\
w_x \\
w_y
\end{bmatrix}\)

The expressions of \(u_x, v_x, w_x, u_y, v_y, w_y \) are:

\[
\overline{u}_x = \frac{\partial \overline{u}}{\partial x} + \frac{\overline{w}}{R_1}, \quad \overline{u}_y = \frac{\partial \overline{u}}{\partial y}, \quad \overline{v}_x = \frac{\partial \overline{v}}{\partial x} + \frac{\overline{w}}{R_2}, \quad \overline{v}_y = \frac{\partial \overline{v}}{\partial y}, \quad \overline{w}_x = \frac{\partial \overline{w}}{\partial x} - \frac{\overline{u}}{R_1}, \quad \text{and} \quad \overline{w}_y = \frac{\partial \overline{w}}{\partial y} - \frac{\overline{v}}{R_2},
\]

respectively.
Appendix

The values of material property matrix are obtained by the following procedure

\[
[D_G] = \sum_{k=1}^{\infty} \left[H_G \right]^T \{ \delta \}^k \left[H_G \right]
\]

where,

\[
\{ \delta \}^k = \begin{bmatrix}
N_{AF1} + N_{MC1} & N_{AF12} + N_{MC12} & 0 & 0 & 0 & 0 \\
N_{AF12} + N_{MC12} & N_{AF2} + N_{MC2} & 0 & 0 & 0 & 0 \\
0 & 0 & N_{AF1} + N_{MC1} & N_{AF12} + N_{MC12} & 0 & 0 \\
0 & 0 & N_{AF12} + N_{MC12} & N_{AF2} + N_{MC2} & 0 & 0 \\
0 & 0 & 0 & 0 & N_{AF1} + N_{MC1} & N_{AF12} + N_{MC12} \\
0 & 0 & 0 & 0 & N_{AF12} + N_{MC12} & N_{AF2} + N_{MC2}
\end{bmatrix}
\]
Appendix C

Linear Form of the Nonlinear Strain as Appeared in the General Mathematical Formulation

Individual terms of the matrix $[A]$ as appeared in the Eq. (3.29)

$[A]_{1,1} = u_x$, $[A]_{1,3} = v_x$, $[A]_{1,5} = w_x$, $[A]_{2,2} = u_y$, $[A]_{2,4} = v_y$, $[A]_{2,6} = w_y$

$[A]_{3,1} = u_y$, $[A]_{3,2} = u_x$, $[A]_{3,3} = v_y$, $[A]_{3,4} = v_x$, $[A]_{3,5} = w_y$, $[A]_{3,6} = w_x$

$[A]_{4,1} = \phi_1$, $[A]_{4,3} = \phi_2$, $[A]_{4,22} = u_x$, $[A]_{4,23} = v_x$, $[A]_{5,2} = \phi_1$, $[A]_{5,4} = \phi_2$

$[A]_{5,22} = u_x$, $[A]_{5,23} = v_x$, $[A]_{6,1} = \phi_{1,x}$, $[A]_{6,3} = \phi_{2,x}$, $[A]_{6,5} = -\frac{\phi_1}{R_1}$, $[A]_{6,7} = u_x$

$[A]_{6,9} = v_x$, $[A]_{6,22} = -\frac{w_x}{R_1}$, $[A]_{7,2} = \phi_{1,y}$, $[A]_{7,4} = \phi_{2,y}$, $[A]_{7,6} = -\frac{\phi_2}{R_2}$

$[A]_{7,8} = u_y$, $[A]_{7,10} = v_y$, $[A]_{7,23} = -\frac{w_y}{R_2}$, $[A]_{8,1} = \phi_{1,y}$, $[A]_{8,2} = \phi_{2,y}$, $[A]_{8,3} = \phi_{1,x}$

$[A]_{8,4} = \phi_{2,x}$, $[A]_{8,5} = -\frac{\phi_1}{R_1}$, $[A]_{8,6} = -\frac{\phi_2}{R_2}$, $[A]_{8,7} = u_y$, $[A]_{8,8} = u_x$, $[A]_{8,9} = v_y$

$[A]_{8,10} = v_x$, $[A]_{8,22} = -\frac{w_x}{R_1}$, $[A]_{8,23} = -\frac{w_y}{R_2}$, $[A]_{9,1} = 2\psi_1$, $[A]_{9,3} = 2\psi_2$, $[A]_{9,7} = \phi_1$

$[A]_{9,9} = \phi_2$, $[A]_{9,22} = \phi_{1,x}$, $[A]_{9,23} = \phi_{2,x}$, $[A]_{9,24} = 2u_x$, $[A]_{9,25} = 2v_x$

$[A]_{10,2} = 2\psi_1$, $[A]_{10,4} = 2\psi_2$, $[A]_{10,8} = \phi_1$, $[A]_{10,10} = \phi_2$, $[A]_{10,22} = \phi_{1,y}$

$[A]_{10,23} = \phi_{2,y}$, $[A]_{10,24} = 2u_y$, $[A]_{10,25} = 2v_y$, $[A]_{11,1} = \psi_{1,x}$, $[A]_{11,3} = \psi_{2,x}$
\[
[A]_{1,5} = -\frac{\psi_1}{R_1}, \quad [A]_{1,7} = \phi_{1,x}, \quad [A]_{1,9} = \phi_{2,x}, \quad [A]_{1,11} = u_x, \quad [A]_{1,13} = v_x, \quad [A]_{1,22} = \frac{\phi_y}{R_1}.
\]

\[
[A]_{1,24} = -\frac{w_x}{R_1}, \quad [A]_{1,2} = \psi_{1,y}, \quad [A]_{1,4} = \psi_{2,y}, \quad [A]_{1,6} = -\frac{\psi_2}{R_2}, \quad [A]_{1,8} = \phi_{1,y},
\]

\[
[A]_{12,10} = \phi_{2,y}, \quad [A]_{12,12} = u_y, \quad [A]_{12,14} = v_y, \quad [A]_{12,23} = \frac{\phi_y}{R_2}, \quad [A]_{12,25} = -\frac{w_y}{R_2},
\]

\[
[A]_{13,1} = \psi_{1,y}, \quad [A]_{13,2} = \psi_{1,x}, \quad [A]_{13,3} = \psi_{2,y}, \quad [A]_{13,4} = \psi_{2,x}, \quad [A]_{13,5} = -\frac{\psi_2}{R_2},
\]

\[
[A]_{13,6} = -\frac{\psi_1}{R_1}, \quad [A]_{13,7} = \phi_{1,y}, \quad [A]_{13,8} = \phi_{1,x}, \quad [A]_{13,9} = \phi_{2,y}, \quad [A]_{13,10} = \phi_{2,x}, \quad [A]_{13,11} = u_y,
\]

\[
[A]_{13,12} = u_x, \quad [A]_{13,13} = v_y, \quad [A]_{13,14} = v_x, \quad [A]_{13,22} = \frac{1}{R_1}, \quad [A]_{13,23} = \frac{1}{R_2},
\]

\[
[A]_{13,24} = -\frac{w_y}{R_1}, \quad [A]_{13,25} = -\frac{w_x}{R_2}, \quad [A]_{14,3} = 3\theta_1, \quad [A]_{14,3} = 3\theta_2, \quad [A]_{14,7} = 2\psi_1,
\]

\[
[A]_{14,9} = 2\psi_2, \quad [A]_{14,11} = \phi_1, \quad [A]_{14,13} = \phi_2, \quad [A]_{14,22} = \psi_{1,x}, \quad [A]_{14,23} = \psi_{2,x}, \quad [A]_{14,24} = 2\phi_1,
\]

\[
[A]_{14,25} = 2\phi_2, \quad [A]_{14,26} = 3u_x, \quad [A]_{14,27} = 3v_x, \quad [A]_{15,2} = 3\theta_1, \quad [A]_{15,4} = 3\theta_2,
\]

\[
[A]_{15,8} = 2\psi_1, \quad [A]_{15,10} = 2\psi_2, \quad [A]_{15,12} = \phi_1, \quad [A]_{15,14} = \phi_2, \quad [A]_{15,22} = \psi_{1,y}, \quad [A]_{15,23} = \psi_{2,y},
\]

\[
[A]_{15,24} = 2\phi_1, \quad [A]_{15,25} = 2\phi_2, \quad [A]_{15,26} = 3u_y, \quad [A]_{15,27} = 3v_y, \quad [A]_{16,1} = \theta_1,
\]

\[
[A]_{16,3} = \theta_2, \quad [A]_{16,5} = -\frac{\theta_1}{R_1}, \quad [A]_{16,7} = \psi_{1,x}, \quad [A]_{16,9} = \psi_{2,x}, \quad [A]_{16,11} = \phi_1, \quad [A]_{16,13} = \phi_2,
\]

\[
[A]_{16,15} = u_x, \quad [A]_{16,17} = v_x, \quad [A]_{16,22} = \frac{\psi_y}{R_1}, \quad [A]_{16,24} = \frac{\phi_y}{R_2}, \quad [A]_{16,26} = -\frac{w_x}{R_1},
\]

\[
[A]_{17,2} = \theta_1, \quad [A]_{17,4} = \theta_2, \quad [A]_{17,6} = -\frac{\theta_2}{R_2}, \quad [A]_{17,8} = \psi_{1,y}, \quad [A]_{17,10} = \psi_{2,y},
\]

\[
[A]_{17,12} = \phi_{1,y}, \quad [A]_{17,14} = \phi_{2,y}, \quad [A]_{17,16} = u_y, \quad [A]_{17,18} = v_y, \quad [A]_{17,23} = \frac{\psi_2}{R_2}, \quad [A]_{17,25} = \frac{\phi_y}{R_2},
\]

\[
[A]_{17,27} = -\frac{w_y}{R_2}, \quad [A]_{18,1} = \theta_1, \quad [A]_{18,2} = \theta_2, \quad [A]_{18,3} = \theta_2, \quad [A]_{18,4} = \theta_2,
\]

\[
[A]_{18,5} = -\frac{\theta_1}{R_1}, \quad [A]_{18,6} = -\frac{\theta_2}{R_2}, \quad [A]_{18,7} = \psi_{1,y}, \quad [A]_{18,8} = \psi_{1,x}, \quad [A]_{18,9} = \psi_{2,y},
\]
Appendix

\[
\begin{align*}
[A]_{18,10} &= \psi_{2,x}, \\
[A]_{18,11} &= \phi_{1,y}, \\
[A]_{18,12} &= \phi_{1,x}, \\
[A]_{18,13} &= \phi_{2,y}, \\
[A]_{18,14} &= \phi_{2,x}, \\
[A]_{18,15} &= u_{y}, \\
[A]_{18,16} &= u_{x}, \\
[A]_{18,17} &= v_{y}, \\
[A]_{18,18} &= v_{x}, \\
[A]_{18,22} &= \frac{1}{R_{1}} \frac{\psi_{2}}{R_{2}}, \\
[A]_{18,23} &= \frac{1}{R_{1}} \frac{\psi_{1}}{R_{2}}, \\
[A]_{18,24} &= \frac{1}{R_{1}} \frac{\phi_{2}}{R_{2}}, \\
[A]_{18,25} &= \frac{1}{R_{1}} \frac{\phi_{1}}{R_{2}}, \\
[A]_{18,26} &= -\frac{w_{y}}{R_{1}}, \\
[A]_{18,27} &= -\frac{w_{x}}{R_{2}}, \\
[A]_{19,7} &= 3\theta_{1}, \\
[A]_{19,9} &= 3\theta_{2}, \\
[A]_{19,11} &= 2\psi_{1}, \\
[A]_{19,13} &= 2\psi_{2}, \\
[A]_{19,15} &= \phi_{1}, \\
[A]_{19,17} &= \phi_{2}, \\
[A]_{19,22} &= \theta_{1,x}, \\
[A]_{19,23} &= \theta_{2,x}, \\
[A]_{19,24} &= 2\psi_{1,x}, \\
[A]_{19,25} &= 2\psi_{2,x}, \\
[A]_{19,26} &= 3\phi_{1,x}, \\
[A]_{19,27} &= 3\phi_{2,x}, \\
[A]_{20,8} &= 3\theta_{1}, \\
[A]_{20,10} &= 3\theta_{2}, \\
[A]_{20,12} &= 2\psi_{1}, \\
[A]_{20,14} &= 2\psi_{2}, \\
[A]_{20,16} &= \phi_{1}, \\
[A]_{20,18} &= \phi_{2}, \\
[A]_{20,22} &= \theta_{1,y}, \\
[A]_{20,23} &= \theta_{2,y}, \\
[A]_{20,24} &= 2\psi_{1,y}, \\
[A]_{20,25} &= 2\psi_{2,y}, \\
[A]_{21,11} &= \psi_{1,x}, \\
[A]_{21,13} &= \psi_{2,x}, \\
[A]_{21,15} &= \phi_{1,x}, \\
[A]_{21,17} &= \phi_{2,x}, \\
[A]_{21,22} &= \frac{\theta_{1}}{R_{1}^{2}}, \\
[A]_{21,24} &= \frac{\psi_{1}}{R_{1}^{2}}, \\
[A]_{21,26} &= \frac{\phi_{1}}{R_{1}^{2}}, \\
[A]_{22,8} &= \theta_{1,y}, \\
[A]_{22,10} &= \theta_{2,y}, \\
[A]_{22,12} &= \psi_{1,y}, \\
[A]_{22,14} &= \psi_{2,y}, \\
[A]_{22,16} &= \phi_{1,y}, \\
[A]_{22,18} &= \phi_{2,y}, \\
[A]_{22,23} &= \frac{\theta_{2}}{R_{2}^{2}}, \\
[A]_{22,25} &= \frac{\psi_{2}}{R_{2}^{2}}, \\
[A]_{22,27} &= \frac{\phi_{2}}{R_{2}^{2}}, \\
[A]_{23,7} &= \theta_{1,y}, \\
[A]_{23,8} &= \theta_{1,x}, \\
[A]_{23,9} &= \theta_{2,y}, \\
[A]_{23,10} &= \theta_{2,x}, \\
[A]_{23,11} &= \psi_{1,y}, \\
[A]_{23,12} &= \psi_{1,x}, \\
[A]_{23,13} &= \psi_{2,y}, \\
[A]_{23,14} &= \psi_{2,x}, \\
[A]_{23,15} &= \phi_{1,y}, \\
[A]_{23,16} &= \phi_{1,x}, \\
[A]_{23,17} &= \phi_{2,y}, \\
[A]_{23,18} &= \phi_{2,x}, \\
[A]_{23,22} &= \frac{1}{R_{1}} \frac{\theta_{2}}{R_{2}}, \\
[A]_{23,23} &= \frac{1}{R_{2}} \frac{\theta_{1}}{R_{1}}, \\
[A]_{23,24} &= \frac{1}{R_{1}} \frac{\psi_{2}}{R_{2}}, \\
[A]_{23,25} &= \frac{1}{R_{2}} \frac{\phi_{1}}{R_{2}}, \\
[A]_{23,26} &= \frac{1}{R_{2}} \frac{\phi_{2}}{R_{2}}, \\
[A]_{23,27} &= \frac{1}{R_{1}} \frac{\phi_{1}}{R_{1}}, \\
[A]_{24,11} &= 3\theta_{1}, \\
[A]_{24,13} &= 3\theta_{2}, \\
[A]_{24,15} &= 2\psi_{1}, \\
[A]_{24,17} &= 2\psi_{2}, \\
[A]_{24,24} &= 2\theta_{1,x}, \\
[A]_{24,25} &= 2\theta_{2,x}, \\
[A]_{24,26} &= 3\psi_{1,x}, \\
[A]_{24,27} &= 3\psi_{2,x}, \\
[A]_{25,12} &= 3\theta_{1}, \\
[A]_{25,14} &= 3\theta_{2}, \\
[A]_{25,16} &= 2\psi_{1}, \\
[A]_{25,18} &= 2\psi_{2}, \\
[A]_{25,24} &= 2\theta_{1,x}, \\
[A]_{25,25} &= 2\theta_{2,y}, \\
[A]_{25,26} &= 3\psi_{1,y}, \\
[A]_{25,27} &= 3\psi_{2,y}, \\
[A]_{26,11} &= \theta_{1,x}, \\
[A]_{26,13} &= \theta_{2,x}, \\
[A]_{26,15} &= \psi_{1,x}, \\
[A]_{26,17} &= \psi_{2,x}, \\
[A]_{26,24} &= \frac{\theta_{1}}{R_{1}^{2}}, \\
[A]_{26,26} &= \frac{\psi_{1}}{R_{1}^{2}}, \\
\end{align*}
\]
Appendix

\[[A]_{27,12} = \theta_{1,y}, \quad [A]_{27,14} = \theta_{2,y}, \quad [A]_{27,16} = \psi_{1,y}, \quad [A]_{27,18} = \psi_{2,y}, \quad [A]_{27,25} = \frac{\theta_2}{R_2}, \]

\[[A]_{27,27} = \frac{\psi_2}{R_2}, \quad [A]_{28,11} = \theta_{1,y}, \quad [A]_{28,12} = \theta_{1,x}, \quad [A]_{28,13} = \theta_{2,y}, \quad [A]_{28,14} = \theta_{2,x}, \]

\[[A]_{28,15} = \psi_{1,y}, \quad [A]_{28,16} = \psi_{1,x}, \quad [A]_{28,17} = \psi_{2,y}, \quad [A]_{28,18} = \psi_{2,x}, \quad [A]_{28,24} = \frac{1}{R_1 R_2}, \]

\[[A]_{28,25} = \frac{\theta_1}{R_1 R_1}, \quad [A]_{28,26} = \frac{\psi_1}{R_1 R_2}, \quad [A]_{28,27} = \frac{\psi_1}{R_2 R_1}, \quad [A]_{29,15} = 3\theta_1, \quad [A]_{29,17} = 3\theta_2, \]

\[[A]_{29,26} = 3\theta_{1,x}, \quad [A]_{29,27} = 3\theta_{2,x}, \quad [A]_{30,16} = 3\theta_1, \quad [A]_{30,18} = 3\theta_2, \quad [A]_{30,26} = 3\theta_{1,y}, \]

\[[A]_{30,27} = 3\theta_{2,y}, \quad [A]_{31,15} = \theta_{1,y}, \quad [A]_{31,17} = \theta_{1,x}, \quad [A]_{31,26} = \frac{\theta_1}{R_1}, \quad [A]_{32,16} = \theta_{1,x}, \quad [A]_{32,18} = \theta_{2,y}, \]

\[[A]_{33,15} = \theta_{1,x}, \quad [A]_{33,16} = \theta_{1,y}, \quad [A]_{33,18} = \theta_{2,x}, \quad [A]_{33,26} = \frac{1}{R_1 R_2}, \quad [A]_{33,27} = \frac{1}{R_2 R_1}. \]

(C1)

Individual terms of the \([G]\) matrix

\[[G]_{1,1} = \frac{\partial}{\partial x}, \quad [G]_{1,3} = \frac{1}{R_1}, \quad [G]_{2,1} = \frac{\partial}{\partial y}, \quad [G]_{3,2} = \frac{\partial}{\partial x}, \quad [G]_{4,2} = \frac{\partial}{\partial y}, \quad [G]_{4,3} = \frac{1}{R_2}, \]

\[[G]_{5,1} = -\frac{1}{R_1}, \quad [G]_{5,3} = \frac{\partial}{\partial x}, \quad [G]_{6,2} = -\frac{1}{R_2}, \quad [G]_{6,3} = \frac{\partial}{\partial y}, \quad [G]_{7,4} = \frac{\partial}{\partial x}, \quad [G]_{8,4} = \frac{\partial}{\partial y}, \]

\[[G]_{9,5} = \frac{\partial}{\partial x}, \quad [G]_{10,5} = \frac{\partial}{\partial y}, \quad [G]_{11,6} = \frac{\partial}{\partial x}, \quad [G]_{12,6} = \frac{\partial}{\partial y}, \quad [G]_{13,7} = \frac{\partial}{\partial x}, \quad [G]_{14,7} = \frac{\partial}{\partial y}, \]

\[[G]_{15,8} = \frac{\partial}{\partial x}, \quad [G]_{16,8} = \frac{\partial}{\partial y}, \quad [G]_{17,9} = \frac{\partial}{\partial y}, \quad [G]_{18,9} = \frac{\partial}{\partial x}, \quad [G]_{19,1} = 1, \quad [G]_{20,2} = 1, \quad [G]_{21,3} = 1, \]

\[[G]_{22,4} = 1, \quad [G]_{23,5} = 1, \quad [G]_{24,6} = 1, \quad [G]_{25,7} = 1, \quad [G]_{26,8} = 1, \quad [G]_{27,9} = 1. \]

(C2)
Trupti Ranjan Mahapatra, the author of the dissertation, was born on 23rd June 1981 in Berhampur, the silk city of Odisha. He completed matriculation (10th) under the Board of Secondary Education (BSE), Odisha in 1996 and higher secondary education (10+2) under the Council of Higher Secondary Education (CHSE), Odisha in 1998, both with first division. He then attended the University College of Engineering (Presently VSSTU), Burla, where he obtained his Bachelor of Science degree in Mechanical Engineering in August 2003. Then in October 2003, he started his teaching career as a lecturer in Kalinga Institute of Industrial Technology (presently KIIT University), Bhubaneswar where he concurrently completed his Master of Technology in Manufacturing Processes and Systems, in May 2006. In addition to his current engagement as Assistant Professor in the School of Mechanical Engineering, KIIT University, he is also a registered counsellor in Indira Gandhi National Open University and working as Assistant Coordination in IGNOU study centre (2101), KIIT University for the past 7 years. The author’s current research interest lies in the field of Composite Structures, Smart Structures and Nonlinear Dynamics. He has to his credit some publications in journals and conferences. Lists of papers that have been published /communicated are given below:

Published/Accepted in International Journals

December 5th-6th, National Institute of Technology Rourkela, (Published in: IOP Conference Series: Materials Science and Engineering) DOI: 10.1088/1757-899X/75/1/012017

Published/Accepted in International/National Conferences:

3. Kataria, P. V., Mahapatra, T. R., and Panda, S. K. (2013), Stability Analysis of Laminated Composite Cylindrical Shell Structure under uni-axial loading, All India Seminar on Recent Advances in Mechanical Engineering, Odisha State Centre Institution of Engineers (India), Bhubaneswar, India, 16-17 March.

