CONTENTS

CHAPTER–ONE: General Introduction

1. Introduction
1.1. Solid electrolytes
1.2. Fuel cells- General aspects
1.3. Historical perspective
1.4. Types of fuel cells
 i- Proton exchange membrane fuel cell (PEMFC)
 ii- Alkaline fuel cell (AFC)
 iii- Phosphoric acid fuel cell (PAFC)
 iv- Molten carbonate fuel cell (MCFC)
 v- Direct methanol fuel cell (DMFC)
 vi- Regenerative fuel cell
 vii- Zinc air fuel cell (ZAFC)
 viii- Solid oxide fuel cell (SOFC)
1.5. Materials for solid oxide fuel cells
 1.5.1. General requirement for fuel cells
 1.5.2. SOFC configurations
 1.5.3. Tubular SOFC
 1.5.4. Planar SOFC
1.6. Oxide-ion conductors
 1.6.1. Fluorite type oxide-ion conductors
 1.6.2. Bi$_2$O$_3$ based oxide-ion conductors
 1.6.3. Doped ceria based oxide-ion conductors
 1.6.4. Perovskite based oxide-ion conductors
 1.6.5. Brownmillerite based oxide-ion conductor
 1.6.6. Aurivillius based oxide-ion conductors
1.7. Applications of oxide-ion conductors
 1.7.1. Batteries based on oxide-ion conductors
1.7.2. Thermometers based on oxide-ion conductors
1.7.3. Oxygen sensors
1.7.4. Air separators
1.7.5. Analog memories
References

CHAPTER–TWO: The BIMEVOX family
2.1. Review
2.2. Defect chemistry of BIMEVOXes
 (i) The equatorial vacancy (EV) model
 (ii) The Apical vacancy (AV) model
2.3. Electrical conduction in BIMEVOXes
2.4. Model for conduction mechanism in BIMEVOXes
2.5. Literature background
2.6. Techniques used
 (i) FT-IR Spectroscopy
 (ii) X-ray Diffraction Analysis
 (iii) Differential Thermal Analysis (DTA)
 (iv) AC Impedance Spectroscopy
References

CHAPTER–THREE: Electrical conductivity and phase transition studies in Ca-doped Bi$_4$V$_2$O$_{11-\delta}$ oxide-ion conductor.
3.1. Introduction
3.2. Experimental
3.3. Results and discussion
 3.3.1. X-ray powder diffraction analysis
 3.3.2. FT-IR spectra
 3.3.3. Differential thermal analysis
 3.3.4. AC impedance analysis
 3.3.5. Temperature dependence of conductivity
3.4. Conclusions
References

CHAPTER–FOUR: Electrical conductivity and phase transition studies in Ba-doped Bi$_4$V$_2$O$_{11-\delta}$ oxide-ion conductor.
4.1. Introduction
4.2. Experimental
4.3. Results and discussion
CHAPTER-FIVE: Electrical conductivity and phase transition studies in Sn-doped Bi$_4$V$_2$O$_{11-δ}$ oxide-ion conductor.

5.1. Introduction 156
5.2. Experimental 157
5.3. Results and discussion 158
5.3.1. FT–IR spectroscopy 158
5.3.2. X–ray powder diffraction analysis 161
5.3.3. Differential thermal analysis 166
5.3.4. AC impedance spectroscopy 169
5.3.5. Temperature dependence of conductivity 174
5.4. Conclusions 182
References 183

CHAPTER-SIX: Electrical conductivity and phase transition studies in Mn-doped Bi$_4$V$_2$O$_{11-δ}$ oxide-ion conductor.

6.1. Introduction 187
6.2. Experimental 188
6.3. Results and discussion 190
6.3.1. FT–IR spectroscopy 190
6.3.2. X–ray powder diffraction 193
6.3.3. Differential thermal analysis 197
6.3.4. AC impedance spectroscopy 200
6.3.5. Temperature dependence of conductivity 203
6.4. Conclusions 211
References 212

Conclusions 218