CONTENTS

Certificate
Acknowledgement
Abbreviations

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1-6</td>
</tr>
<tr>
<td>II</td>
<td>REVIEW OF LITERATURE</td>
<td>7-77</td>
</tr>
<tr>
<td></td>
<td>2.1 Isolation of organic solvent-tolerant bacteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Advantages of biocatalysis in organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Factors contributing to the loss of enzymatic activity in organic media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Thermal stability and solvent tolerance of lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 Various mechanism of inactivation of lipase in organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1 Changes in cell morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Homeoviscous adaptation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.2 Regulation by efflux pumps against organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.3 Conformational changes in the tertiary structure of enzyme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.4 Deformation of active site geometry by organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.5 Thermodynamic stabilization of ground state of the substrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.6 Interfacial inactivation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6 Correlation between enzyme activity and the nature of organic solvents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 Microbial province of lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7.1 Filamentous fungal lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7.2 Bacterial lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7.2.1 Lipase from Streptomyces spp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7.3 Yeast lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7.4 Other sources of lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8 Structural aspects of lipases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8.1 Mechanism of lipase catalyzed reaction</td>
<td></td>
</tr>
</tbody>
</table>
2.9 Bioeconomics of lipases
2.10 Advantages of lipase catalysis over chemical reaction(s)
2.11 Production and purification of lipases
2.12 Basis of thermo-stability of lipases
2.13 Immobilization strategies of lipases
 2.13.1 Adsorption
 2.13.2 Covalent binding
 2.13.3 Entrapment
 2.13.4 Cross linking of enzyme aggregates
 2.13.5 Crude extract of solid state fermentation
2.14 Effect of organic solvents on lipase catalysis
2.15 Tolerance and behaviour of lipases towards organic solvents
2.16 Removal of water during lipase catalysis in organic solvents
2.17 Ferulic acid and its esters
2.18 Applications of lipases
 2.18.1 Lipases in organic synthesis
 2.18.2 Esterification by lipases
 2.18.3 Lipases as potential tool in pharmaceutical and food industry
 2.18.4 Lipases in polymer synthesis and detergent formulation(s)
 2.18.5 Lipases as biosensors
 2.18.6 Lipases in waste treatment and fatty acid fractionation
 2.18.7 Lipases in peptide synthesis
 2.18.8 Role of esters in biological systems
2.19 Lipases are most versatile class of enzymes

III MATERIALS AND METHODS

3.1 Materials
 3.1.1 Bacterial culture
 3.1.2 Chemicals, lab wares, kits, equipments and accessories
3.2 Methodology: Screening of bacterial culture(s) for extracellular lipolytic activity and solvent tolerance
3.2.1 Level 1: Screening for thermophilic and lipolytic bacterial culture(s)
3.2.2 Level 2: Screening for solvent tolerance of bacterial culture(s)
3.2.3 Quantitative analysis of bacterial isolates for lipase activity on tributyrin agar plates
3.2.4 Assay of lipase
3.2.5 Cultural characteristics
3.2.6 Growth in MB broth
3.2.7 Biochemical characteristics

3.3 Characterization of bacterial strain STL-D8 by 16S rRNA sequencing and phylogenetic analysis

3.4 Preparation of inoculum of *Streptomyces* sp.

3.5 Optimization of inoculum (seed culture) size
3.5.1 Age of inoculums
3.5.2 Optimization of agitation rate

3.6 Growth and lipase production profile of *Streptomyces* sp.

3.7 Standardization of parameters for lipase production by *Streptomyces* sp.
3.7.1 Production of lipase by manipulation of culture conditions
3.7.2 Effect of various carbon sources (lipid) on lipase production by *Streptomyces* sp.
3.7.3 Effect of carbon sources (carbohydrates) on lipase production by *Streptomyces* sp.
3.7.4 Effect of organic nitrogen (complex) source on extracellular lipase production by *Streptomyces* sp.
3.7.5 Effect of inorganic nitrogen (salts) source on extracellular lipase production by *Streptomyces* sp.
3.7.6 Effect of different inducers on production of extracellular lipase by *Streptomyces* sp.
3.7.7 Effect of different organic solvents at varied concentrations on extracellular lipase production by *Streptomyces* sp.
3.7.8 Influence of DMSO on the growth and extracellular lipase production by *Streptomyces* sp.

3.7.9 Cumulative effect of optimized culture conditions as a function of initial pH on extracellular lipase production by *Streptomyces* sp.

3.7.10 Effect of cultivation temperature on extracellular lipase production by *Streptomyces* sp.

3.7.11 Effect of surfactants on extracellular lipase production by *Streptomyces* sp.

3.7.12 Substrate specificity and affinity of the extracellular lipase of *Streptomyces* sp.

3.8 Production of extra-cellular lipase under optimized conditions

3.8.1 Production of extra-cellular lipase under optimized conditions in different batches

3.8.2 Preparation of crude lipase

3.9 Purification of bacterial lipase

3.9.1 Protein quantification (Bradford, 1976)

3.9.2 Procedure

3.10 Hydrophobic interaction chromatography

3.11 Polyacrylamide gel electrophoresis (PAGE)

3.11.1 Reagents

3.12 Characterization of purified lipase of *Streptomyces* sp.

3.12.1 Effect of reaction temperature on activity of purified lipase of *Streptomyces* sp.

3.12.2 Thermostability of *Streptomyces* lipase

3.12.3 Selection of buffer and optimization of pH for the purified lipase of *Streptomyces* sp.

3.12.4 Effect of Tris-buffer pH on activity of purified lipase of *Streptomyces* sp.

3.12.5 Effect of salt ions on activity of purified lipase of *Streptomyces* sp.

3.12.6 Effect of selected salt ions on activity of purified lipase of *Streptomyces* sp.

3.12.7 Effect of detergents on lipase activity
3.12.8 Effect of different chelating agents on lipase activity
3.12.9 Substrate specificity and affinity of the lipase

3.13 Determination of K_m and V_{max} of lipase of *Streptomyces* sp.

3.14 Immobilization of purified lipase of *Streptomyces* sp.

3.14.1 Immobilization of lipase onto Celite-545 and silica (0.040-0.063 mm) by physical adsorption

3.14.2 Immobilization of lipase onto natural fibers by covalent binding

3.15 Analysis of hydrolytic properties of fiber-bound lipase

3.15.1 Effect of repeated use of fiber-immobilized lipase on its hydrolytic activity

3.15.2 Effect of temperature on the hydrolytic activity of fiber-bound lipase

3.15.3 Effect of detergents on the activity of the hydrolytic activity of fiber-immobilized lipase

3.15.4 Effect of salt ions on the hydrolytic activity of fiber-immobilized lipase

3.16 Synthesis of esters by using immobilized lipase

3.16.1 Esterification of ethanol and ferulic acid using silica-bound lipase

3.16.2 Optimization of parameters for synthesis of ethyl ferulate by silica-bound lipase

3.16.3 Optimization of reaction parameters for synthesis of isoamyl ferulate

3.16.4 Synthesis of 1-octyl ferulate and 2-octyl ferulate using silica-bound lipase of *Streptomyces* sp.
3.16.5 Optimization of parameters for synthesis of 2-octyl ferulate using silica-bound lipase of *Streptomyces* sp.

3.17 Synthesis and assay of ethyl ferulate using fiber-bound biocatalysts

3.18 Data analysis

IV RESULTS

4.1 Isolation and screening of thermophilic solvent-tolerant lipase producing bacterial strains

4.1.1 Sampling for the lipase producing Microorganisms

4.1.2 Level 1: Screening of thermophilic and lipolytic bacterial culture(s)

4.1.3 Level 2: Screening for solvent tolerance of bacterial culture(s)

4.1.4 Quantitative screening/ analysis of bacterial isolates for lipase activity on tributyrin agar medium

4.1.5 Cultural characteristics

4.1.6 Characterization of bacterial strain STL-D6 by 16S rRNA sequencing

4.1.7 Culture and biochemical characteristics of bacterial isolate STL-D8

4.2 Production of extracellular solvent tolerant lipase by thermophilic bacterial isolate

4.2.1 Optimization of age of inoculums

4.2.2 Optimization of agitation rate for extracellular lipase production by *Streptomyces* sp.

4.2.3 Optimization of inoculum size for extracellular lipase production by *Streptomyces* sp.

4.3 Effect of incubation time: Growth and lipase production profile of *Streptomyces* sp.

4.4 Optimization of culture conditions for the production of lipase by *Streptomyces* sp.

4.4.1 Optimization of carbon source

4.4.2 Optimization of nitrogen sources
4.4.3 Effect of inorganic nitrogen (salts) source on lipase production
4.4.4 Effect of different inducers on lipase production
4.4.5 Effect of different organic solvents at varied concentrations on extracellular lipase production by *Streptomyces* sp.
4.4.6 Influence of DMSO on the growth and lipase production by *Streptomyces* sp.
4.4.7 Effect of pH of the MB broth culture containing DMSO on extracellular lipase production by *Streptomyces* sp.
4.4.8 Effect of cultivation temperature on extracellular lipase production by *Streptomyces* sp.
4.4.9 Effect of surfactants on extracellular lipase production by *Streptomyces* sp.
4.4.10 Substrate specificity of extracellular lipase of *Streptomyces* sp.
4.4.11 Batchwise yield of extracellular lipase by *Streptomyces* sp.

4.5 Purification of extracellular lipase of *Streptomyces* sp.
4.5.1 Salting out of extracellular lipase of *Streptomyces* sp.
4.5.2 Hydrophobic interaction (Octyl-Sepharose) chromatography
4.5.3 SDS-PAGE analysis for purity and molecular mass determination
4.5.4 Native-PAGE analysis of purified lipase of *Streptomyces* sp.

4.6 Characterization of purified lipase of *Streptomyces* sp.
4.6.1 Effect of reaction temperature on activity of purified lipase of *Streptomyces* sp.
4.6.2 Thermostability of *Streptomyces* sp. lipase
4.6.3 Effect of buffer and optimization of pH for the extracellular lipase of *Streptomyces* sp.

4.6.5 Effect of pH of Tris buffer (0.05 M) on lipase activity of *Streptomyces* sp.

4.6.6 Effect of salt ions on activity of purified lipase from *Streptomyces* sp.

4.6.7 Effect of selected salt ions on activity of purified lipase of *Streptomyces* sp.

4.6.8 Effect of detergents on activity of purified lipase of *Streptomyces* sp.

4.6.9 Effect of chelating agents on activity of purified lipase of *Streptomyces* sp.

4.6.10 Substrate specificity and affinity of purified lipase

4.7 Determination of K_m and V_{max} of lipase of *Streptomyces* sp.

4.8 Immobilization of *Streptomyces* lipase

4.8.1 Immobilization of lipase onto Celite-545 and silica (0.040-0.063 mm) by physical adsorption

4.8.2 Hydrolytic properties of silica-bound lipase

4.9 Esters syntheses by silica-bound lipase in organic medium

4.9.1 Analysis of ethyl ferulate by GLC

4.9.2 Ethyl ferulate synthesis by esterification of ethanol and ferulic acid using silica-immobilized lipase

4.9.3 Optimization of process parameters for synthesis of ethyl ferulate

4.9.4 Isoamyl ferulate synthesis by silica-bound lipase

4.9.5 Syntheses of octyl ferulate esters by silica-bound lipase in organic medium

4.10 Ethyl ferulate synthesis using covalently-bound lipase of *Streptomyces* sp. on photo-chemically modified cellulose-based natural fibers

4.10.1 Repetitive use of fiber-immobilized lipase on its hydrolytic activity
4.10.2 Effect of temperature on the hydrolytic activity of fiber-bound lipase

4.10.3 Effect of detergents on the activity of the hydrolytic activity of fiber-immobilized lipase

4.10.4 Effect of salt ions on the hydrolytic activity of cellulose fiber-immobilized lipase

4.10.5 Synthesis of ethyl ferulate using different fiber-bound biocatalysts

V DISCUSSION

5.1 Isolation of thermophilic solvent tolerant lipase producing bacteria

5.2 Optimization of culture conditions and extracellular lipase production by Streptomyces sp.

5.3 Purification of lipase from Streptomyces sp.

5.4 Characterization of purified lipase of Streptomyces sp.

5.5 Immobilization of purified lipase of Streptomyces sp.

5.6 Esters syntheses

5.6.1 Ethyl ferulate synthesis by silica-bound lipase of Streptomyces sp.

5.6.2 Isoamyl ferulate synthesis by silica-bound lipase of Streptomyces sp.

5.6.3 Synthesis of octyl ferulate esters (1-octyl ferulate and 2-octyl ferulate)

5.7 Covalent immobilization of Streptomyces sp. lipase onto photo-chemically modified cellulose-based natural fibers and its use in ethyl ferulate synthesis

VI SUMMARY

REFERENCES

ANNEXURE