List of Figures:

Figure 1.1 Offshore Kerala basin w.r.t. petroliferous Cambay, Mumbai and Cauvery Basins. 71

Figure 1.2 Drilled wells in Kerala and Mannar basins (Indian part) with Bathymetry. 72

Figure 1.3 Lithologs of the shelfal wells. A&B encountered thick Upper Cretaceous. 73

Figure 1.4 East to West seismic profile acquired on a common geography. The Vintage seismics could not bring out the sub-basalt stratigraphy. The Modern seismics demonstrate Mesozoics. 74

Figure 1.5 Bathymetry of Arabian Sea and Bay of Bengal and topography of adjoining continent. 75

Figure 1.6A: Proterozoic Mobile belts :Index and simplified tectonic map of the West Indian passive margin Note a coincidence of main shear zones, main rift-controlling faults, axes of gravity highs and mobile belt locations. Sey – Seychelles, DAMB – Delhi-Aravalli mobile belt, EGMB – Eastern Ghats mobile belt, GDMB – Godavari mobile belt, HMMB – Himalayan mobile belt, MNMB – Mahanadi mobile belt, MWMB – Madagascar West Coast mobile belt, SGMB – Southern Granulite mobile belt, STMB – Satpura mobile belt, AB – Antongil craton, BC – Bundelkhand craton, BBC – Bastar Bhandara craton, MCB – Masora craton, SC – Singhbhum craton, WDC – Western Dharwar craton and WG – Western Ghats. 76

Figure 1.6B Tectonic map of India (digitized from Ray, 1963) with terrane boundary between mobile belts, represented by the Southern Granulite Terrain and Eastern Ghats Mobile Belt, and Achaean cratons, represented by Dharwar, Bastar and Singhbhum cratons. 77

Figure 1.7 Best fit plate reconstruction for South America-Africa-Antarctica system at 140 Ma in the reference frame of fixed Africa. Spreading in the Riiser-Larsen Sea and Mozambique basin took place in roughly N-S direction while the direction in the Weddell Sea was NW-SE. Anp – Antarctic peninsula, Bi – Beattie anomaly, C.A. – Central anomalies, Col – Colorado sub-plate, E-Ant – Eastern Antarctica, EWm – Ellsworth Whitmore mountains, Fkb – Falkland plateau basin, Fki – Falkland islands, FRs – Filchner – Ronne shelf, Gfs – Gastre fault system, Ind – India, Mad – Madagascar, Mbl – Marie Byrd land, MEb – Maurice Ewing bank, Moz – Mozambique basin, Mozr – Mozambique ridge, O-A – Orion anomaly, Par – Parana sub-plate, Pat – Patagonia, Sal – Salado sub-plate, SKA – Sverdrupfjella Kirwanveggen anomaly, Sri – Sri Lanka, SAM – South America sub-plate, Thu – Thuston island. 78
Figure 1.8 Best fit plate reconstruction for South America-Africa-Antarctica system at 125.36 Ma. Red, blue and green open symbols are rotated anomaly picks on the South American, African and Antarctica plates, respectively. Africa is fixed to its present-day position. Bi – Beattie anomaly, Fp – Falkland plateau, Fki – Falkland islands, FRs – Filchner – Ronne shelf, Gb – Georgia basin, Ind – India, Mad – Madagascar, MEb – Maurice Ewing bank, LS – Lazarev Sea, Mozb – Mozambique basin, Mozr – Mozambique ridge, NNV – Northern Natal Valley, RLS – Riieser-Larsen Sea, SNV – Southern Natal Valley, Sri – Sri Lanka.

Figure 1.9 Simplified map of the Arabian sea. Bold black lines – sea-floor spreading ridges, thinner black lines and thin dashed black lines – oceanic fracture zones, thin black lines with numbers – sea-floor spreading-related magnetic anomalies, FZ – oceanic fracture zone, black circle with number – DSDP drilling site, v pattern – onshore portions of the Deccan volcanic province in India.

Figure 1.10 Bouguer gravity (band pass of 10-200 km) anomaly map of the West Indian offshore with onshore topography.

Figure 1.11 Apatite fission track data-based modeled denudation curves for lowland and upland areas around the Western Ghats, using two different initial track lengths of 16.3 and 14.5 μm). Thick solid line indicates curve provided by the spatial average based on interpolating the results over each sub-area. Dashed line denotes curve provided by unweighted mean of the denudation chronology at individual sample locations. Thin solid line indicates the mean denudation at individual locations, weighted by the uncertainty in the inferred thermal history for each location.

Figure 1.12 Heat flow map of India and adjoining areas (after Heat Flow Atlas of India 1991).

Figure 1.13 Stratigraphy of Kerala Offshore Basin, India.

Figure 1.14 Cross-section constructed from seismic profiles connecting wells of Kerala & Mannar.

Figure 1.15 Age Lithology and Depositional environment of formation in section of DSDP-219 Well.

Figure 2.1 Tight reassembly of Gondwana Pre-Cambrian elements prior to 200 Ma.

Figure 2.2 Telescoping the Transform faults provided a match between India and Madagascar as separated by a Transform fault – AA’, which is now proposed Vishnu transform.

Figure 2.3 Ocean floor Isochron and the study area.
Figure 2.4 Seismic Profiles across the study area exhibiting Structural Inversion and Transpression within Mesozoics.

Figure 2.5 Kerala Basin was situated to the NE of Mozambique Proto-Ocean (MPO) at 160 Ma and eastward at 118 Ma. The MPO was a restricted Ocean from 167 to 118 Ma congenial for Source rock deposition and Preservation.

Figure 2.6 Movements of India: older NE-SW orientation during Pre-Santonian became N-S during Post Santonian. A34 Anomaly is the boundary between these two movement orientations. Fracture zones and anomalies are picked from Desa et al. 2006.

Figure 2.7 Figure showing Vishnu F.Z. Boundary on both sides of the Indian Ocean with similar Cretaceous flow lines (red) and post Syechelles - India rifting flow lines (white) showing the contrast in age across the Vishnu F.Z.

Figure 2.8 Source rocks of Eastern Gondwana with Oil and Gas filed.

Figure 2.9 Generalized Stratigraphy of Mozambique, Seychelles, Majunga, Morondava, Kerala, Gulf of Mannar and Cauvery Basins. Pre-deccan for Kerala basin is prognosticated.

Figure 2.10 Hydrothermal vent complexes generate eye-structure at the Paleosurface and also generate hydrocarbon migration pathways.

Figure 2.11 Seismic Coverage overlaid on Bouguer Gravity in the study area.

Figure 2.12 Free air Gravity Map illustrating study area w.r.t. tectonic elements.

Figure 2.13 a) Bouguer Gravity Data (2.0 g/cc).

b) 200 km Low-Pass of Bouguer Gravity.

c) 10-200 km band-pass filter of Bouguer gravity.

Figure 2.14 (A) indicate 15-20 km thickness; (B) older crust juxtaposing younger crust

(C) Crustal Density 2.64 – 2.76 g/cc in the study area.

Figure 2.15 Seismic section from Kerala basin showing poor quality data and change in the deeper imaging with better acquisition parameters in new data.

Figure 2.16 Prospects identified include large anticline, 3-way closures and bio-herms.

Figure 2.17 Paleo-structural analysis through seismic horizon flattening method indicate the structural evolution of the anticline was initiated during the Aptian Time (~118 Ma).
Figure 2.18 Structure formed during 118-93 Ma and further modified during 93-65 Ma

Figure 2.19 Identified SDRs in the SW of study area; location of the Seismic Profile in Fig 2.11 as ‘C’.

Figure 2.20 Proposed COB derived from crustal thickness and SDR’s; 1&2 from Sreejith et al.2008; 4 is from Crustal Thickness and SDRs of Ajay et al. 2010; 3 is extrapolated. Crustal thickness is taken from Kusznir 2009. COB is diachronous due to Transform Faults.

Figure 2.21 140 to 88 Ma brackets the time frame of plate separation off India and Madagascar.

Figure 2.22 A combination of 2D forward gravity modeling and Werner depth to magnetic source estimates A) shows magnetic anomalies and B) shows gravity anomalies. Observed data are dots and solid lines are the responses calculated from the model C depth section showing seismic refraction control, a single sedimentary layer, and two crystalline crustal layers (between heavy black lines). Werner depth solutions are red and blue symbols. This simple model, tied to regional seismic refraction control, indicates that the crust beneath the study area is about 16 km thick. D) Shows the location map.

Figure 2.23 Surface Heat Flow in the study area and Cauvery Basin; Heat flow shows same range of values as that of Cauvery in the study area.

Figure 2.24 Schematic representation of thick sedimentary pile east of VFZ.

Figure 2.25 Sedimentary provenance is from the present day east as interpreted from outbuild of seismic sequences.

Figure 2.26 A) Seismic isopach (TWT) of mappable sequences in the study area indicate two possible source kitchens in the study area. The anticline prospect is in between these two lows. B) Flood basalt thickness map indicating 100-1200m from East to West over the anticline.

Figure 2.27 A) Petroleum Implications of Intrusive Volcanic processes and deposits. B) Volcanic emplacements in the study area. (Location of the Seismic display shown here is in Figure 2.11).

Figure 2.28 Examples from Hydrocarbon Fields in Volcanic Margins: A) Shtokman East Barents Sea B) Corrib Gas Field, Offshore Ireland C) Rosebank, Shetland Basin D) Qingshen Gas field, China E) Samgori Field, Georgia.

Figure 2.29 Magnetic basement Depth (m).

Figure 2.30 Representative seismic section with Possible Reservoirs and Seal Rocks in the area.
Figure 2.31 A) Global Anoxic Events in Past 150 Ma. B) The southern margin of India has no documented source intervals. However, facies with restricted circulation suggestive of potential anoxic source development can be hypothesized for repeated intervals throughout the basin history. The area was subjected to 3 phases of rift tectonism (incipient rifting, Madagascar separation and Seychelles separation), and each can be projected as having possible restricted facies, both at sequence onset – with potential limited circulating conditions -- and in late phase development with stagnating conditions as the basin fills.

118-119

Figure 2.32 Envisaged Petroleum Systems in the study area.

Figure 2.33 Petroleum system chart: Among the three possible scenarios in Fig. 2.32, the best case is explained.

121

Figure 2.34 Seepage slicks overlaid on Multibeam(A) and on Seismic (B).

122

Figure 2.35 Shallow Seismic clues on possible gas escape observed in the area: A) Polygonal fault in Multibeam data B) Seismic expression of polygonal fault systems.

123