LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1.1</td>
<td>Classification of patented taste masking strategies based on coating</td>
</tr>
<tr>
<td>Fig. 2.0.A</td>
<td>Steps involved in sublimation</td>
</tr>
<tr>
<td>Fig. 4.1.1</td>
<td>Chemical structure of norfloxacin</td>
</tr>
<tr>
<td>Fig. 4.2.1</td>
<td>Chemical structure of ciprofloxacin HCl</td>
</tr>
<tr>
<td>Fig. 5.1.1.A</td>
<td>Calibration curve of norfloxacin in 0.1 N HCl</td>
</tr>
<tr>
<td>Fig. 5.1.2.A</td>
<td>Chromatogram obtained with blank plasma</td>
</tr>
<tr>
<td>Fig. 5.1.2.B</td>
<td>Chromatograms obtained with blank plasma and plasma spiked with norfloxacin for the calibration curve</td>
</tr>
<tr>
<td>Fig. 5.1.2.C</td>
<td>Calibration curve for the estimation of norfloxacin in plasma samples</td>
</tr>
<tr>
<td>Fig. 5.2.1.2</td>
<td>Effect of pH on drug loading efficiency</td>
</tr>
<tr>
<td>Fig. 5.2.2.1</td>
<td>DSC Thermograms of (A) Norfloxacin, (B) Indion 414, (C) N-I 414 (1:1), (D) N-I 414 (1:2) and (E) N-I 414 (1:3)</td>
</tr>
<tr>
<td>Fig. 5.2.2.2</td>
<td>X-Ray Diffractograms of (A) Norfloxacin, (B) Indion 414, (C) N-I 414 (1:1), (D) N-I 414 (1:2) and (E) N-I 414 (1:3)</td>
</tr>
<tr>
<td>Fig. 5.2.2.3A</td>
<td>SEM Photographs of (A) Norfloxacin and (B) Indion 414</td>
</tr>
<tr>
<td>Fig. 5.2.2.3B</td>
<td>SEM Photographs of (A) N-I 414 (1:1), (B) N-I 414 (1:2) and (C) N-I 414 (1:3)</td>
</tr>
<tr>
<td>Fig. 5.2.2.4</td>
<td>FTIR Spectras of (A) Norfloxacin, (B) Indion 414, (C) N-I 414 (1:1), (D) N-I 414 (1:2) and (E) N-I 414 (1:3)</td>
</tr>
<tr>
<td>Fig. 5.2.2.7.A</td>
<td>Dissolution profiles of norfloxacin - Indion 414 resin complex in 0.1 N HCl</td>
</tr>
<tr>
<td>Fig. 5.2.2.7.B</td>
<td>First order dissolution plots of norfloxacin - Indion 414 resin complex</td>
</tr>
</tbody>
</table>
in 0.1 N HCl

Fig. 5.2.2.7.C Hixson-crowell’s dissolution plots of norfloxacin - Indion 414 resin complex in 0.1 N HCl

Fig. 5.3.2.A Comparison of disintegration time for norfloxacin ODTs of different superdisintegrants

Fig. 5.3.2.B1 Dissolution profiles of norfloxacin ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 5.3.2.B2 First order dissolution plots of norfloxacin ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 5.4.2.C.1A Dissolution profiles of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 5.4.2.C.1B First order dissolution plots of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 5.4.2.C.2A Dissolution profiles of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 5.4.2.C.2B First order dissolution plots of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 5.5.1.2 Effect of pH on drug loading efficiency

Fig. 5.5.2.1 DSC Thermograms of (A) Norfloxacin, (B) Indion 254, (C) N-I 254 (1:1), (D) N-I 254 (1:2) and (E) N-I 254 (1:3)

Fig. 5.5.2.2 X-Ray diffractograms of (A) Norfloxacin, (B) Indion 254, (C) N-I 254 (1:1), (D) N-I 254 (1:2) and (E) N-I 254 (1:3)

Fig. 5.5.2.3A SEM Photographs of (A) Norfloxacin and (B) Indion 254
Fig. 5.5.2.3B SEM Photographs of (A) N-I 254 (1:1), (B) N-I 254 (1:2) and (C) N-I 254 (1:3)

Fig. 5.5.2.4 FTIR Spectras of (A) Norfloxacin, (B) Indion 414, (C) N-I 254 (1:1), (D) N-I 254 (1:2) and (E) N-I 254 (1:3)

Fig. 5.5.2.7.A Dissolution profiles of norfloxacin - Indion 254 resin complex in 0.1 N HCl

Fig. 5.5.2.7.B First order dissolution plots of norfloxacin - Indion 254 resin complex in 0.1 N HCl

Fig. 5.5.2.7.C Hixson-crowell’s dissolution plots of norfloxacin - Indion 254 resin complex in 0.1 N HCl

Fig. 5.6.2.A Comparison of disintegration time for norfloxacin ODTs of different superdisintegrants

Fig. 5.6.2.B1 Dissolution profiles of norfloxacin ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 5.6.2.B2 First order dissolution plots of norfloxacin ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 5.7.2.C.1A Dissolution profiles of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 5.7.2.C.1B First order dissolution plots of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 5.7.2.C.2A Dissolution profiles of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 5.7.2.C.2B First order dissolution plots of norfloxacin reconstituted dry syrups containing drug as drug resin complexes on day 7
containing drug as drug resin complexes on day 7

Fig. 5.8.2.1 DSC Thermograms of (A) Norfloxacin, (B) Stearic acid, (C) PEG 1500, (D) N-S-P (1:1:0), (E) N-S-P (1:1:0.2), (F) N-S-P (1:1:0.3), (G) N-S-P (1:1:0.4), (H) N-S-P (1:1:0.6), (I) N-S-P (1:1:0.8) and (J) N-S-P (1:1)

Fig. 5.8.2.2 X-Ray Diffractograms of (A) Norfloxacin, (B) Stearic acid, (C) PEG 1500, (D) N-S-P (1:1:0), (E) N-S-P (1:1:0.2), (F) N-S-P (1:1:0.3), (G) N-S-P (1:1:0.4), (H) N-S-P (1:1:0.6), (I) N-S-P (1:1:0.8) and (J) N-S-P (1:1)

Fig. 5.8.2.3A SEM Photographs of (A) Norfloxacin, (B) Stearic acid and (C) PEG 1500

Fig. 5.8.2.3B SEM Photographs of (A) Norfloxacin-Stearic acid-PEG (1:1:0), (B) Norfloxacin-Stearic acid-PEG (1:1:0.2) and (C) Norfloxacin-Stearic acid-PEG (1:1:0.3)

Fig. 5.8.2.3C SEM Photographs of (A) Norfloxacin-Stearic acid-PEG (1:1:0.4), (B) Norfloxacin-Stearic acid-PEG (1:1:0.6) and (C) Norfloxacin-Stearic acid-PEG (1:1:0.8)

Fig. 5.8.2.3D SEM Photograph of (A) Norfloxacin-Stearic acid-PEG (1:1:1)

Fig. 5.8.2.4 FTIR Spectras of (A) Norfloxacin, (B) Stearic acid, (C) PEG 1500, (D) N-S-P (1:1:0), (E) N-S-P (1:1:0.2), (F) N-S-P (1:1:0.3), (G) N-S-P (1:1:0.4), (H) N-S-P (1:1:0.6), (I) N-S-P (1:1:0.8) and (J) N-S-P (1:1:1)

Fig. 5.8.2.7A Dissolution profiles of norfloxacin solid dispersions containing stearic
acid and different concentrations of PEG 1500

Fig. 5.8.2.7B First order dissolution plots of norfloxacin solid dispersions containing stearic acid and different concentrations of PEG 1500

Fig. 5.9.2.C.1A Dissolution profiles of norfloxacin reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 1

Fig. 5.9.2.C.1B First order dissolution plots of norfloxacin reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 1

Fig. 5.9.2.C.2A Dissolution profiles of norfloxacin reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 7

Fig. 5.9.2.C.2B First order dissolution plots of norfloxacin reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 7

Fig. 5.10C1 Dissolution profiles of norfloxacin dry syrup before and after storage for 6 months at $40 \pm 2^\circ C / 75 \pm 5\%$RH

Fig. 5.10C2 First order dissolution plots of norfloxacin dry syrup before and after storage for 6 months at $40 \pm 2^\circ C / 75 \pm 5\%$RH

Fig. 5.11.1 Time Vs Plasma concentration curves of norfloxacin following oral administration of commercial suspension (Bacigyl) and experimental formulation (NRDS04) in rabbits

Fig. 5.11.2 Time Vs Log percent drug unabsorbed plot of norfloxacin following
oral administration of commercial suspension (Bacigyl) and experimental formulation (NRDS04) in rabbits

Fig. 6.1.1.A Calibration curve of ciprofloxacin HCl in 0.1 N HCl
Fig. 6.1.2.A Chromatogram obtained with blank plasma
Fig. 6.1.2.B Chromatograms obtained with blank plasma and plasma spiked with ciprofloxacin HCl for the calibration curve
Fig. 6.1.2.C Calibration curve for the estimation of ciprofloxacin HCl in plasma samples

Fig. 6.2.1.2 Effect of pH on drug loading efficiency
Fig. 6.2.2.1 DSC Thermograms of (A) Ciprofloxacin HCl, (B) Indion 414, (C) C-I 414 (1:1), (D) C-I 414 (1:2) and (E) C-I 414 (1:3)
Fig. 6.2.2.2 X-Ray Diffractograms of (A) Ciprofloxacin HCl, (B) Indion 414, (C) C-I 414 (1:1), (D) C-I 414 (1:2) and (E) C-I 414 (1:3)
Fig. 6.2.2.3A SEM Photographs of (A) Ciprofloxacin HCl and (B) Indion 414
Fig. 6.2.2.3B SEM Photographs of (A) C-I 414 (1:1), (B) C-I 414 (1:2) and (C) C-I 414 (1:3)
Fig. 6.2.2.4 FTIR Spectras of (A) Ciprofloxacin HCl, (B) Indion 414, (C) C-I 414 (1:1), (D) C-I 414 (1:2) and (E) C-I 414 (1:3)
Fig. 6.2.2.7.A Dissolution profiles of ciprofloxacin HCl - Indion 414 resin complex in 0.1 N HCl
Fig. 6.2.2.7.B First order dissolution plots of ciprofloxacin HCl - Indion 414 resin complex in 0.1 N HCl
Fig. 6.2.2.7.C Hixson-crowell’s dissolution plots of ciprofloxacin HCl - Indion 414
resin complex in 0.1 N HCl

Fig. 6.3.2.A Comparison of disintegration time for ciprofloxacin HCl ODTs of different superdisintegrants

Fig. 6.3.2.B1 Dissolution profiles of ciprofloxacin HCl ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 6.3.2.B2 First order dissolution plots of ciprofloxacin HCl ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 6.4.2.C.1A Dissolution profiles of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 6.4.2.C.1B First order dissolution plots of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 6.4.2.C.2A Dissolution profiles of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 6.4.2.C.2B First order dissolution plots of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 6.5.1.2 Effect of pH on drug loading efficiency

Fig. 6.5.2.1 DSC Thermograms of (A) Ciprofloxacin HCl, (B) Indion 254, (C) C-I 254 (1:1), (D) C-I 254 (1:2) and (E) C-I 254 (1:3)

Fig. 6.5.2.2 X-Ray Diffractograms of (A) Ciprofloxacin HCl, (B) Indion 254, (C) C-I 254 (1:1), (D) C-I 254 (1:2) and (E) C-I 254 (1:3)

Fig. 6.5.2.3A SEM Photographs of (A) Ciprofloxacin HCl and (B) Indion 254

Fig. 6.5.2.3B SEM Photographs of (A) C-I 254 (1:1), (B) C-I 254 (1:2) and (C) C-I 254 (1:3)
Fig. 6.5.2.4 FTIR Spectras of (A) Ciprofloxacin HCl, (B) Indion 414, (C) C-I 254 (1:1), (D) C-I 254 (1:2) and (E) C-I 254 (1:3)

Fig. 6.5.2.7.A Dissolution profiles of ciprofloxacin HCl - Indion 254 resin complex in 0.1 N HCl

Fig. 6.5.2.7.B First order dissolution plots of ciprofloxacin HCl - Indion 254 resin complex in 0.1 N HCl

Fig. 6.5.2.7.C Hixson-crowell’s dissolution plots of ciprofloxacin HCl - Indion 254 resin complex in 0.1 N HCl

Fig. 6.6.2.A Comparison of disintegration Time for ciprofloxacin HCl ODTs of different superdisintegrants

Fig. 6.6.2.B1 Dissolution profiles of ciprofloxacin HCl ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 6.6.2.B2 First order dissolution plots of ciprofloxacin HCl ODTs containing drug as drug resin complexes and superdisintegrants

Fig. 6.7.2.C.1A Dissolution profiles of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 6.7.2.C.1B First order dissolution plots of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 1

Fig. 6.7.2.C.2A Dissolution profiles of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 6.7.2.C.2B First order dissolution plots of ciprofloxacin HCl reconstituted dry syrups containing drug as drug resin complexes on day 7

Fig. 6.8.2.1 DSC Thermograms of (A) Ciprofloxacin HCl, (B) Stearic acid,
Fig. 6.8.2.2 X-Ray diffractograms of (A) Ciprofloxacin HCl, (B) Stearic acid, (C) PEG 1500, (D) C-S-P (1:1:0), (E) C-S-P (1:1:0.2), (F) C-S-P (1:1:0.3), (G) C-S-P (1:1:0.4), (H) C-S-P (1:1:0.6) and (I) C-S-P (1:1:0.8)

Fig. 6.8.2.3A SEM Photographs of (A) Ciprofloxacin HCl, (B) Stearic acid and (C) PEG 1500

Fig. 6.8.2.3B SEM Photographs of (A) Ciprofloxacin HCl-Stearic acid-PEG (1:1:0), (B) Ciprofloxacin HCl-Stearic acid-PEG (1:1:0.2) and (C) Ciprofloxacin HCl-Stearic acid-PEG (1:1:0.3)

Fig. 6.8.2.3C SEM Photographs of (A) Ciprofloxacin HCl-Stearic acid-PEG (1:1:0.4), (B) Ciprofloxacin HCl-Stearic acid-PEG (1:1:0.6) and (C) Ciprofloxacin HCl-Stearic acid-PEG (1:1:0.8)

Fig. 6.8.2.4 FTIR Spectra of (A) Ciprofloxacin HCl, (B) Stearic acid, (C) PEG 1500, (D) C-S-P (1:1:0), (E) C-S-P (1:1:0.2), (F) C-S-P (1:1:0.3), (G) C-S-P (1:1:0.4), (H) C-S-P (1:1:0.6) and (I) C-S-P (1:1:0.8)

Fig. 6.8.2.7A Dissolution profiles of ciprofloxacin HCl solid dispersions containing stearic acid and different concentrations of PEG 1500

Fig. 6.8.2.7B First order dissolution plots of ciprofloxacin HCl solid dispersions containing stearic acid and different concentrations of PEG 1500
Fig. 6.9.2.C1A Dissolution profiles of ciprofloxacin HCl reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 1

Fig. 6.9.2.C1B First order dissolution plots of ciprofloxacin HCl reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 1

Fig. 6.9.2.C2A Dissolution profiles of ciprofloxacin HCl reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 7

Fig. 6.9.2.C2B First order dissolution plots of ciprofloxacin HCl reconstituted dry syrups containing drug as solid dispersion prepared with stearic acid and PEG 1500 on day 7

Fig. 6.10C1 Dissolution profiles of ciprofloxacin HCl dry syrup before and after storage for 6 months at 40 ± 2°C / 75 ± 5%RH

Fig. 6.10C2 First order dissolution plots of ciprofloxacin HCl dry syrup before and after storage for 6 months at 40 ± 2°C / 75 ± 5%RH

Fig. 6.11.1 Time Vs Plasma concentration curves of ciprofloxacin HCl following oral administration of commercial tablets (Cifran 100) and experimental formulation (CRDS04) in rabbits

Fig. 6.11.2 Time Vs Log Percent drug unabsorbed plot of ciprofloxacin HCl following oral administration of commercial tablets (Cifran 100) and experimental formulation (CRDS04) in rabbits