List of tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Legends</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Radical scavenging ability of Ginseng extract (GE) and Banaba leaf extract (BLE).</td>
</tr>
<tr>
<td>2.2</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes in the rate of food and water consumption in fluoride intoxicated diabetic mice.</td>
</tr>
<tr>
<td>2.3</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in body weight (g) at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.4</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in blood glucose levels (mg/dl) at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.5</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of glycosylated hemoglobin (%) at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.6</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of hepatic glycogen (mg/g) at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.7</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of serum urea (mg/dl) at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.8</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of serum creatinine (mg/dl) at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.9</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of fluoride content (μg/g tissue) in liver tissue at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.10</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of fluoride content (μg/g tissue) in kidney tissue at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>2.11</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of fluoride content (μg/g tissue) in brain tissue at different intervals upon 60 days of phytoextract supplementation.</td>
</tr>
<tr>
<td>3.1</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of carbohydrate metabolizing enzymes in the liver.</td>
</tr>
<tr>
<td>3.2</td>
<td>Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of carbohydrate metabolizing enzymes in the kidney.</td>
</tr>
</tbody>
</table>
3.3 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of carbohydrate metabolizing enzymes in the cerebral cortex.

3.4 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of carbohydrate metabolizing enzymes in the cerebellum.

3.5 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of carbohydrate metabolizing enzymes in the hippocampus.

3.6 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the levels of serum insulin and serum T3.

3.7 Correlation between serum insulin levels and carbohydrate metabolic enzymes in fluoride intoxicated diabetic mice

3.8 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of TCA enzymes in the liver

3.9 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of TCA enzymes in the kidney

3.10 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of TCA enzymes in the cerebral cortex

3.11 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of TCA enzymes in the cerebellum

3.12 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of TCA enzymes in the hippocampus

4.1 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the organ somatic index

4.2 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the oxidative stress indices in liver

4.3 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the oxidative stress indices in kidney

4.4 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the oxidative stress indices in cerebral cortex

4.5 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the oxidative stress indices in cerebellum

4.6 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the oxidative stress indices in hippocampus

4.7 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of mitochondrial enzymes complexes in liver.
4.8 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of mitochondrial enzymes complexes in kidney.

4.9 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of mitochondrial enzymes complexes in cerebral cortex.

4.10 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of mitochondrial enzymes complexes in cerebellum.

4.11 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the activity levels of mitochondrial enzymes complexes in hippocampus.

5.1 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the protein metabolic indices in liver.

5.2 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the protein metabolic indices in kidney.

5.3 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the protein metabolic indices in cerebral cortex.

5.4 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the protein metabolic indices in cerebellum.

5.5 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the protein metabolic indices in hippocampus.

5.6 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the serum lipid levels.

6.1 Summary of histopathological alterations observed in the liver of fluoride intoxicated diabetic mice and influence of phytoextracts (GE and BLE at 150mg/kgbw dose) in the mitigation of toxicity

6.2 Summary of histopathological alterations observed in the kidney of fluoride intoxicated diabetic mice and influence of phytoextracts (GE and BLE at 150mg/kgbw dose) in the mitigation of toxicity

6.3 Summary of histopathological alterations observed in the cerebral cortex of fluoride intoxicated diabetic mice and influence of phytoextracts (GE and BLE at 150mg/kgbw dose) in the mitigation of toxicity

6.4 Summary of histopathological alterations observed in the cerebellum of fluoride intoxicated diabetic mice and influence of phytoextracts (GE and BLE at 150mg/kgbw dose) in the mitigation of toxicity

6.5 Summary of histopathological alterations observed in the hippocampus of fluoride intoxicated diabetic mice and influence of phytoextracts (GE and BLE at 150mg/kgbw dose) in the mitigation of toxicity

7.1 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the organ somatic index (OSI) of male reproductive organs upon 15-days of phytoextract supplementation.
7.2 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the organ somatic index (OSI) of male reproductive organs upon 30-days of phytoextract supplementation

7.3 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the semen quality indices viz., sperm density, sperm viability and sperm motility upon 15-days of phytoextract supplementation

7.4 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the semen quality indices viz., sperm density, sperm viability and sperm motility upon 30-days of phytoextract supplementation

7.5 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the sperm morphology and acrosome integrity upon 15-days of phytoextract supplementation

7.6 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the sperm morphology and acrosome integrity upon 30-days of phytoextract supplementation

7.7 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the testicular biochemical parameters upon 15-days of phytoextract supplementation

7.8 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the testicular biochemical parameters upon 30-days of phytoextract supplementation

7.9 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed in the polychromatic (PCEs) and normochromatic (NCEs) erythrocytes (at different intervals) upon 30-days of phytoextract supplementation

7.10 Dose dependent effects of ginseng (GE) and banaba (BLE) extracts on the modulation of fluoride toxicity in diabetic mice: Changes observed on the chromosomal aberrations (at different intervals) upon 30-days of phytoextract supplementation