LIST OF FIGURES

FIGURE 2.1: Container Port in Shanghai; Source: www.portshanghai.com4
FIGURE 2.2: Ports of Gujarat; Source: www.mapsofindia.com5
FIGURE 2.3: Schematic figure of performance grades S, A, B and C [1]11
FIGURE 2.4: Seismic risk assessment model for port structures12
FIGURE 2.5: a) Fragility function definition, b) Evaluating damage state probabilities in
fragility analysis ..15
FIGURE 3.1: Gujarat map showing location of port under study; Source: www.wikimapia.org ..17
FIGURE 3.2: Fault map of Kutch, Gujarat; Source: http://www.isr.gujarat.gov.in18
FIGURE 3.3: Typical profile of the selected wharf [48] ..19
FIGURE 3.4: Typical plan of the selected wharf [48] ...19
FIGURE 3.5: Crane load operating condition case I (STAAD model)24
FIGURE 3.6: Crane load operating condition case II (STAAD model)24
FIGURE 3.7: Fender Block Section ..27
FIGURE 3.8: Berthing force given on wharf model ...27
FIGURE 3.9: Bollard Pull SBD 1-200; source: http://www.pacificmarine.net28
FIGURE 3.10: Resultant current force at high tide level ..29
FIGURE 3.11: Resultant current force at low tide level ..29
FIGURE 3.12: Determination of fixity depth of pile [54] and STAAD model34
FIGURE 3.13: Wharf modeled using soil spring constants (STAAD model)36
FIGURE 3.14: Moment envelope for each pile grid using both approaches37
FIGURE 3.15: Pile detailing ..39
FIGURE 4.1: Numerical model of the selected wharf in SAP200041
FIGURE 4.2: Moment curvature curves for grid E piles (whole section failure)42
FIGURE 4.3: Moment curvature curves for grid E pile up to concrete failure42
FIGURE 4.4: Property of one of the distributed hinges along grid E pile (SAP 2000)......43
FIGURE 4.5: Hinge formation and damage sequence during pushover process in SAP 2000...47
FIGURE 4.6: Hinge sequence for wharf in transverse direction as per PIANC47
FIGURE 4.7: Actual hinge sequence in wharf in transverse direction50
FIGURE 4.8: Snapshot of pushover curve of existing wharf in SAP 200050
FIGURE 4.9: Capacity v/s Demand in CSM [59]..51
FIGURE 4.10: Typical variation of shear wave velocity with depth at selected site [61]..52
FIGURE 4.11: Site specific spectra for the selected D type soil for L1, L2 and L3 earthquake ..53
FIGURE 4.12: Comparison of spectra obtained as per site and IS189353
FIGURE 4.13: PEER strong motion database input box for selection of appropriate earthquake events ...55
FIGURE 4.14: Spectral acceleration v/s Time plot for the selected 10 earthquake events 55
FIGURE 4.15: Normalized earthquake events..56
FIGURE 4.16: Input and output window for CSM in SAP200057
FIGURE 4.17: Damage bound on the capacity curve of wharf60
FIGURE 4.18: Hinge result showing cracking in grid E pile61
FIGURE 4.19: Moment curvature plot showing effective yield point and actual moment acting at step 3 ..61
FIGURE 4.20: Moment curvature plot showing effective yield point and actual moment acting at step 5 ...62
FIGURE 4.21: Moment Curvature plot showing ultimate capacity and actual moment acting at step7 ...63
FIGURE 4.22: Moment Curvature plot showing ultimate capacity and actual moment acting at step9 ...63
FIGURE 4.23 : Spreadsheet to derive fragility curves using displacements66
FIGURE 4.24 : Spreadsheet to derive fragility curves using ductility factors..........67
FIGURE 4.25: Fragility curves for selected wharf for damage states I, II and III using displacement bound.

FIGURE 4.26: Simplified lognormal fragility curves for the selected wharf using displacement bound.

FIGURE 5.1: Sample time history input for EQ1 FN in SAP2000

FIGURE 5.2: Time History analysis output in SAP2000

FIGURE 5.3: Idealized moment curvature plot

FIGURE 5.4: Spreadsheet to derive fragility curves using displacements-250 mm pitch.

FIGURE 5.5: Simplified lognormal fragility curves for selected wharf - 250 mm pitch.

FIGURE 5.6: Simplified lognormal fragility curves for selected wharf - 175 mm pitch.

FIGURE 5.7: Simplified lognormal fragility curves for selected wharf - 100 mm pitch.

FIGURE 5.8: Simplified lognormal fragility curves for selected wharf - 65mm pitch.

FIGURE 6.1: Gujarat map showing location of ports under study; source: www.wikimapia.org

FIGURE 6.2: Site Specific Spectra for Dahej port site, Gujarat

FIGURE 6.3: Site Specific Spectra for Navlakhi port site, Gujarat

FIGURE 6.4: Site Specific Spectra for Hazira port site, Gujarat

FIGURE 6.5: Site Specific Spectra for Kandla port site, Gujarat

FIGURE 6.6: Simplified lognormal fragility Curves for Dahej port site

FIGURE 6.7: Simplified lognormal fragility Curves for Navlakhi port site

FIGURE 6.8: Simplified lognormal fragility Curves for Hazira port site

FIGURE 6.9: Simplified lognormal fragility Curves for Kandla port site

FIGURE I.1: Suparna flats at commerce six roads, Ahmedabad

FIGURE I.2: Structural system of Suparna flats

FIGURE I.3: Pictures showing failure in building post Bhuj 2001 earthquake

FIGURE I.4: 3D model of Suparna building in SAP2000
FIGURE I.5: Design spectrum for Ahmedabad site as per IS1893 part-1:2002, Zone – III, Medium soil...167

FIGURE I.6: Fragility curves for Suparna flats ...168