CONTENTS

CHAPTER 1: INTRODUCTION 1-36

1.0 Pollution 1
1.1 Types of pollution 3
 1.1.1 Water Pollution 4
 1.1.2 Air Pollution 5
 1.1.3 Land Pollution 6
1.2 Plastics 6
1.3 Plasticizers 11
 1.3.1 Role of plasticizers 11
1.4 Phthalates 12
 1.4.1 Environmental fate of phthalates 13
 1.4.2 Environmental degradation of phthalates 15
1.5 Need for environmental pollution control 15
1.6 Treatment Methods 16
 1.6.1 Physical treatment methods 16
 1.6.1 Chemical treatment methods 17
 1.6.3 Biological treatment methods 18
 1.6.3.1 Aerobic biological treatment 18
 1.6.3.2 Anaerobic biological treatment 18
 1.6.3.3 Importance of biological treatment methods 19
1.7 Bioremediation 20
 1.7.1 Principles of bioremediation 22
 1.7.2 In situ bioremediation of soil 25
 1.7.3 Ex situ bioremediation of soil 25
 1.7.3.1 Solid-phase bioremediation 27
 1.7.3.2 Slurry phase bioremediation 29
1.8 Bioaugmentation 32
 1.8.1 Bioaugmentation options 33

CHAPTER 2: LITERATURE SURVEY AND SCOPE OF THE WORK 37-50

2.0 Literature Survey 37
2.1 Application, production and Toxicity of selected phthalates 39
 2.1.1 DEP 39
 2.1.2 DnBP 40
 2.1.3 DEHP 42
2.2 Reported work on the degradation of selected phthalates 44
2.3 Aims and Objectives of the work 49
CHAPTER 3: EXPERIMENTAL METHODOLOGY

3.1 Introduction 51

3.2 Materials 52
3.2.1 Di-ethyl phthalate (DEP) 52
3.2.2 Di-n-butyl phthalate (DnBP) 53
3.2.3 Di-ethylhexyl phthalate (DEHP) 55
3.2.4 Other chemicals 56
3.2.5 Water 58
3.2.6 Soil 58
3.2.7 ETP microflora 59

3.3 Experimental methods 59
3.3.1 Adsorption 61
3.3.2 Solid phase (in situ) bioremediation studies 63
3.3.3 Slurry 65
3.3.3.1 Slurry phase bioreactor configuration 65
3.3.3.2 Slurry preparation 67
3.3.3.3 Reactor startup and operation 67
3.3.3.3.1 Di-ethyl phthalate (DEP) 67
3.3.3.3.2 Di-n-butyl phthalate (DnBP) 69
3.3.3.3.3 Di-ethylhexyl phthalate (DEHP) 70
3.3.3.4 Sequence phase and operation details 72
3.3.3.4.1 Di-ethyl phthalate (DEP) 72
3.3.3.4.2 Di-n-butyl phthalate (DnBP) 73
3.3.3.4.3 Di-ethylhexyl phthalate (DEHP) 73
3.3.3.5 Reactors operated with varied initial substrate concentration 74
3.3.3.5.1 Di-ethyl phthalate (DEP) 74
3.3.3.5.2 Di-n-butyl phthalate (DnBP) 76
3.3.3.5.3 Di-ethylhexyl phthalate (DEHP) 78

3.4 Analytical Protocols 80
3.4.1 Extraction of phthalates from soil 80
3.4.2 Substrate degradation monitoring 81
3.4.2.1 Thin layer chromatography (TLC) 81
3.4.2.2 Estimation of substrate concentration by HPLC 83
3.4.2.3 Metabolites collection by Semi-preparative HPLC 83
3.4.2.4 Confirmation of metabolites by NMR and MS 84
3.4.2.5 Establishment of degradation pathway 84
3.4.3 Isolation of DnBP degrading microorganism 84
3.4.4 Soil properties 85
3.4.4.1 Soil pH 85
3.4.4.2 Soil moisture 85
3.4.4.3 Bulk density of soil 86
3.4.4.4 Specific gravity 86
3.4.4.5 Organic matter of soil 87
3.4.4.6 Soil texture 87
3.4.4.7 CFU 87
3.4.5 SSB-SBR bioprocess monitoring 88
 3.4.5.1 pH 89
 3.4.5.2 ORP 89
 3.4.5.3 DO 89
 3.4.5.4 OUR 91
 3.4.5.6 CFU 91

CHAPTER 4: RESULTS AND DISCUSSIONS 92-191

4.1 Adsorption 92
 4.1.1 Sorption kinetics 93
 4.1.1.1 Intra particle diffusion model 95
 4.1.1.2 Pseudo kinetic models 97
 4.1.2 Adsorption equilibrium 98
 4.1.3 Influence of pH 101

4.2 Soil properties 103

4.3 Solid phase bioremediation 104
 4.3.1 Di-ethyl phthalate (DEP) 104
 4.3.2 Di-n-butyl phthalate (DnBP) 106
 4.3.3 Di-ethylhexyl phthalate (DEHP) 108

4.4 Slurry phase bioremediation 111
 4.4.1 Di-ethyl phthalate (DEP) 111
 4.4.1.1 Performance of slurry reactor 111
 4.4.1.2 Substrate partitioning between soil and aqueous layers 113
 4.4.1.3 Kinetics of DEP degradation 119
 4.4.1.4 Bioprocess monitoring 123
 4.4.1.4.1 Variation of pH 123
 4.4.1.4.2 Variation of ORP 125
 4.4.1.4.3 Variation of DO 126
 4.4.1.4.4 Variation of OUR 127
 4.4.1.5 Identification of metabolites formed during the degradation of DEP 128
 4.4.1.5.1 Monitoring of DEP degradation by TLC and HPLC 128
 4.4.1.5.2 Confirmation of the structures of metabolites 134
 4.4.1.6 Metabolite pathway 141
 4.4.1.7 Quantification of DEP metabolites 143
 4.4.1.8 Optimization of substrate concentration 144
 4.4.2 Di-n-butyl phthalate 146
 4.4.2.1 Performance of the bioreactor operated for the degradation of DnBP 146
 4.4.2.2 Bioprocess monitoring 147
4.4.2.2.1 Variation of pH 148
4.4.2.2.2 Variation of ORP 149
4.4.2.2.3 Variation of DO 150
4.4.2.2.4 Variation of OUR 151
4.4.2.2.5 Variation of CFU 152

4.4.2.3 Optimization of substrate concentration 153
4.4.2.4 Kinetics of degradation of DnBP 154
4.4.2.5 Identification of metabolites formed during the degradation of DnBP

4.4.2.5.1 Confirming the structure of metabolites 157
4.4.2.6 Isolation of DnBP degrading microorganisms 163

4.4.3 Di-ethylhexyl phthalate (DEHP) 167
4.4.3.1 Performance of the bioreactors 167
4.4.3.2 Bioprocess monitoring 170
4.4.3.2.1 Variation of pH 170
4.4.3.2.2 Variation of DO 171
4.4.3.2.3 Variation of OUR 172
4.4.3.2.4 Variation of CFU 173
4.4.3.3 Kinetics of DEHP degradation 174
4.4.3.4 Identification of metabolites 175
4.4.3.4.1 Confirmation of structures of metabolites 177
4.4.3.4.2 Establishment of degradation pathway 183
4.4.3.5 Reactor performance with various substrate concentration 187

4.5 Comparison on the degradation rates of three selected phthalates 188

CHAPTER 5: SUMMARY AND CONCLUSIONS 192-197

REFERENCES 198

ANNEXURE
List of publication & Reprints