CONTENTS

Statement ... i
Certificate ... ii
Acknowledgments ... iii
Preface ... v
List of Tables .. xiii
List of Figures .. xiv

CHAPTER 1 Introduction ... 1-25

1.1 General .. 2
1.2 Plate Tectonics .. 3
 1.2.1 Plate Boundaries .. 6
 1.2.2 Continental Margins and Ocean Basins 9
 1.2.3 Fracture Zones .. 10
 1.2.4 Age of the Ocean Floor 10
1.3 Mantle Plumes and Hotspots .. 11
 1.3.1 Three Distinct Types of Hotspots 12
 1.3.2 Hotspot Expressions on Lithospheric Plates 15
 1.3.3 Fixity of Hotspots .. 16
1.4 Aseismic Ridges ... 16
 1.4.1 Aseismic Ridges- Record of Absolute and Relative Plate Motions .. 17
1.5 Concept of Isostasy ... 18
 1.5.1 Isostatic Compensation Mechanisms 19
 1.5.1.1 Airy—Heiskanen Model 20
 1.5.1.2 Pratt—Hayford Model 21
 1.5.1.3 Vening Meinesz Model 22
1.6 Elastic Plate Thickness and Flexural Rigidity 23
1.7 Isostatic Compensation of Aseismic Ridges and Seamounts . 23
1.8 Objectives .. 24
CHAPTER 2 Aseismic Ridges of the Northeastern Indian Ocean

2.1 Evolution of the Indian Ocean 27
2.2 Major Aseismic Ridges 32
 2.2.1 The Ninetyeast Ridge 32
 2.2.2 The Chagos-Laccadive Ridge 32
 2.2.3 The 85°E Ridge 34
 2.2.4 The Comorin Ridge 35
 2.2.5 The Broken Ridge 35
2.3 Other Major Structural Features 35
 2.3.1 The Kerguelen Plateau 36
 2.3.2 The Elan Bank 36
 2.3.3 The Afanasy Nikitin seamount 37

CHAPTER 3 Methodology and Geophysical Data 38-53

3.1 Introduction 39
3.2 Gravity Measurements at Sea 40
3.3 Gravity Anomaly Computation 40
 3.3.1 The Latitude Correction 41
 3.3.2 The Free-air Correction and Free-air Gravity Anomaly 41
 3.3.3 The Eötvös correction 42
3.4 Interpretation of Gravity Anomaly using Two-dimensional Gravity Forward Modeling 42
3.5 Theoretical Basis of Isostatic Compensation 44
 3.5.1 Isostatic Response Functions 45
 3.5.2 The Gravitational Admittance 46
 3.5.3 Gravitational Admittance and Isostatic Models 47
3.6 Computation of Admittance from Observed Data 50
3.7 Process Oriented Gravity Modeling 51
3.8 Geophysical Data 53
CHAPTER 4 Structure and Isostasy of the Comorin Ridge 54-82

4.1 Introduction 55
4.2 Geological Setting of the Region 57
4.3 Geophysical Data 58
4.4 Bathymetry, Gravity and Magnetic Anomalies of the Comorin Ridge 58
4.5 Gravity-Topography Admittance Analysis 62
 4.5.1 Elastic Plate Thickness and Crustal Thickness 62
 4.5.2 Te and Age of Emplacement of the Comorin Ridge 68
4.6 Crustal Structure of the Comorin Ridge- Two-Dimensional Gravity Forward Modeling 70
 4.6.1 Crustal Structure of the Southern Comorin Ridge 70
 4.6.2 Crustal Structure of the Northern Comorin Ridge 71
4.7 Continent-Ocean Boundary on Western Margin of Sri Lanka and Southern Tip of India 75
4.8 Tectonics and Evolution of the Comorin Ridge 78

CHAPTER 5 The 85°E Ridge – Study of Crustal Structure, Isostasy and Negative Gravity Anomaly using Process Oriented Gravity Modeling 83-114

5.1 Introduction 84
5.2 Tectonic Setting 87
5.3 Geophysical Data 87
5.4 Seismic Structure and Gravity Anomaly of the 85°E Ridge 88
5.5 Magnetic Response of the 85°E Ridge 95
5.6 Process Oriented Gravity Anomaly Modeling 95
5.7 Elastic Plate Thickness and Crustal Structure of the 85°E Ridge 96
 5.7.1 Crustal Structure of 85°E Ridge- Two-Dimensional Gravity Forward Modeling 100
5.8 Different Stages of the 85°E Ridge - Simulation of Gravity Anomalies 109
5.9 Structure and Tectonics of the 85°E Ridge 111
CHAPTER 6 Spatial Variations in Isostatic Compensation Mechanisms of the Ninetyeast Ridge and their Tectonic Implications 115-153

6.1 Introduction 116
6.2 Geophysical Data 120
 6.2.1 Sediment Corrections 123
 6.2.2 Slab Residual Gravity Anomaly Computation 123
6.3 Bathymetry and Gravity Anomalies of the Ninetyeast Ridge 124
6.4 Elastic Plate Thickness along the Ninetyeast Ridge 126
 6.4.1 Flexural Modeling 127
 6.4.2 Admittance Analysis 133
6.5 Crustal Structure of the Ninetyeast Ridge 139
6.6 Variations of Te values along the Ninetyeast Ridge and Geodynamic Implications 146

CHAPTER 7 Summary and Conclusions 154-164

7.1 The Structure and Isostatic Model of the Comorin Ridge 155
7.2 The Structure and Evolution of the 85°E Ridge 157
7.3 The Structure and Tectonics of the Ninetyeast Ridge 159
7.4 Future Research 161
 7.4.1 Continent-Ocean Boundary on Western Margin of Sri Lanka and Southern Tip of India 162
 7.4.2 Origin of the 85°E Ridge 162
 7.4.3 Variable Isostatic Compensation Mechanism beneath the Ninetyeast Ridge and its Complex Tectonic Evolution 163

References 165

List of Publications from the Present Research Work 182