LIST OF TABLES

Table 2.1 Blood cells approximated geometry and relative concentration.

Table 2.2 The composition of Leukocytes (white cells)

Table 2.3 The estimates of heart wall thickness (mm) and indicative pressure (kPs)

Table 2.4 Approximate quantification of individual vessels in the human circular system

Table 2.5 Types of stenosis degree

Table 2.6 Normal resting values of blood pressure, with system volumes

Table 2.7 The mean pressure (mmHg) in blood vessel through systemic and pulmonary circulation

Table 3.1 Data on wall shear stress for different values of pressure gradient and length of stenosis (L =2z₀), with height δ=0.001m and R₀=0.002 m

Table 3.2 Data on wall shear stress for different values of length of stenosis, pressure gradient 2000 Pa./m, with height of stenosis 0.001 m and R₀=0.002 m

Table 3.3 Data on wall shear stress for different values of height stenosis, with pressure gradient 2000 Pa./m, length of stenosis 0.006 m and R₀=0.002m

Table 3.4 Data on wall shear rate of different values of wall shear stress with viscosity 0.0045 pa.s

Table 4.1 Data on wall shear stress of Cossan fluid in stenosis artery for different values of lengths of stenosis (2z₀)
Table 4.2 Data on wall shear stress, yield stress and viscosity for Casson model of radius $R_0=0.2$ mm, $z_0=2R_0$ and $\beta=0.95$, height of stenosis 0.10 mm, at max. Pressure gradient 267 Pa/m

Table 5.1 Data on wall shear stress (Pa) in the paired stenosis artery for different height stenosis and changeable separation factor z_0 with respect to the radius of artery where $z_1 = z_2 = 0.002$ m and $\delta_1 = \delta_2$ and $R_0=0.003$m

Table 5.2 Data on wall shear stress (Pa) in the paired stenosis artery for different of height of stenosis and the changeable separation factor with respect to the length of both the stenoses. $z_1 = z_2 = 0.0002$ m, $R_0=0.003$m and $\delta_1 = \delta_2$

Table 6.1 Data on wall shear stress for different values of pressure gradient and length of stenosis ($L = 2z_0$) with $\delta/R_0=0.5(R=0.002m)$

Table 6.2 Data on wall shear stress of Newtonian fluid for different values of pressure gradient along stenosis of length 1 cm and $\delta/R_0=0.1$ to 0.9

Table 6.3 Data on wall shear stress, yield stress and viscosity for Casson fluid model of radius $R_0=0.2$ mm, $z_0=2R_0$, height of stenosis 0.10 mm and at max. Pressure gradient 267 Pa/m

Table 6.4 Data on wall shear stress of Cossan fluid in small artery for different values of δ/R_0 from 0.1 to 0.9 and lengths of stenosis is equals 1 cm

Table 6.5 Data on wall shear stress (Pa) in the paired stenosis artery for different heights of stenosis and different changeable separation factor with respect to the lengths of both the stenosis i.e. when $z_1 = z_2 = 0.002$ m
Table 6.6 Data on wall shear stress in the paired stenosis artery for different values of pressure gradient when \(\delta_1/R_0 = \delta_2/R_0 = 0.1 - 0.9 \), with lengths of stenoses are equal 1 cm.

Table 6.7 Indicates the estimated values of wall shear stress in the stenosed artery for different values of combinations of gradient pressure, yield stress and viscosity.

Table 6.8 Indicates the estimated values of wall shear stress in the paired stenosed artery for various values of combinations of \(\delta_1 \) and \(\delta_2 \) when \(z_1 = z_2 = R_0 = 0.003 \) m and \(z_0 = z_1 + z_2 \).