List of Figures

2.1 Classification on the basis of their chemical composition and the shape of crystallite. The boundary between first and second family as indicated in black emphasize the different atomic arrangement in crystallite and boundary. The black boundary shown in first family are of same composition as of crystallite, whereas in second family the composition of boundary is different than crystallites [5]. ... 6

2.2 Schematic illustration of tree types of surface nanocrystallization processes: a) surface coating or deposition, b) Surface self-nanocrystallization and c) hybrid surface nanocrystallization [25]. ... 8

2.3 Schematic for electrodeposition setup. .. 10

2.4 Schematic of the gas condensation chamber for the nano-crystalline materials [44]. ... 12

2.5 Principle of severe plastic deformation ECA pressing. 13

2.6 ECAP die angles [45]. ... 13

2.7 Variation in ECAP routes [45]. ... 14

2.8 Schematic for Principle of SPTS [7]. ... 15

2.9 Mechanical attrition (MA) as a means of synthesis of nano-structured materials. 16

2.10 Schematic for the working principle of SMAT. 16

2.11 A schematic illustration of grain refinement for the Low SFE materials, like Inconel and AISI 304 [69]. ... 18

2.12 Grain refinement mechanism in Fe [26]. ... 19

2.13 A schematic illustration of grain refinement for the low SFE materials, like Inconel and AISI 304 [69]. ... 20

2.14 Actual volume fraction of deformation induced martensite during uniaxial tensile testing at $10^3 s^{-1}$ and $10^{-3} s^{-1}$ strain rates [12]. 22

2.15 Schematic of a reactor for GDPN. ... 26

2.16 Schematic showing working principle for PSII, PIII, RFPN and SIDH. In RFPN an additional positive bias is applied to an electrode on the top. 27

3.1 Schematic for SMAT set-up. ... 38

3.2 Experimental SMAT set-up. ... 38
3.3 a) Sinusoidal waveform to represent the input alternating current magnitude and b) various position of vibrating mild steel plate at respective current magnitude shown in Fig. 3.3a 39
3.4 High-speed camera images captured from the video of moving balls inside the cabin of diameter a) 3mm and b) 8 mm. 40
3.5 Experimental plan for the study. .. 41
3.6 Experimental procedure for the study. 43
4.1 Scheamtic showing the placement of balls inside the SMAT cabin to count the number of balls based on the percentage of surface area of vibrating plate (i.e. OHNS plate inside SMAT cabin, cf. Fig. 3.1) inside the SMAT cabin covered by the balls. 50
4.2 a) Microhardness-depth profiles, b) x-ray diffraction (XRD) patterns recorded from the surface of AISI-304L steel specimens SMATed for various durations (15, 30 and 60 min) by using 25% balls of 3 mm diameter and 15 mm gap. Volume percent of the deformation induced martensite (α') phase formed at the specimen surface is also mentioned on the XRD patterns. 52
4.3 Scanning electron micrographs (SEM) of the cross-section of the AISI-304L steel specimens SMATed for various durations by using 25% balls of 3 mm diameter and 15 mm gap. SMAT duration is the process variable: a) 15 min, b) 30 min and c) 60 min d) SEM micrograph of the cross-section (at the depth of 5 μm below the surface) at high magnification for the specimen SMATed for 60 min by using 25% balls of 3 mm diameter and 15 mm gap. 53
4.4 Surface roughness and hardness for the non-SMATed and 15, 30 and 60 min SMATed specimens. All the SMATed specimens are SMATed by using 25% balls and 15 mm gap. 54
4.5 Microhardness-depth profiles along the cross-section of AISI-304L steel specimens SMATed by using 3 and 8 mm diameter balls. Both the specimens are SMATed for 60 min by using 25% balls and 15 mm gap. 55
4.6 Optical micrographs of the cross-section of AISI-304L steel specimens that are SMATed for 60 min by using various percentages of balls of a)-c) 3 mm and d)-f) 8 mm diameter balls. Percentages of balls are used as the process variables: a), d) 25%, b), e) 50% and c), f) 75%. A constant gap of 15 mm is used. 56
4.7 Electron backscattered diffraction (EBSD) band contrast maps (a), d) and g)), phase maps (b), e) and h)) and inverse pole figure (IPF) maps (c), f) and i)) of the cross-section of AISI-304L steel specimens SMATed for 60 min by using 3 mm diameter balls, 15 mm gap. Here, percentage of balls is the process parameter: a)-c) 25%, d)-f) 50% and g)-i) 75%. 57
4.8 a) and b) X-ray diffraction (XRD) patterns recorded from the surface of AISI-
304L steel specimens SMATed for 60 min by using the various percentages
of balls of 3 and 8 mm diameter respectively. c) and d) Volume percent of
deformation induced martensite (α') phase for various SMAT parameters.
Gaps of 15 and 25 mm are used. ... 58

4.9 Optical micrographs (without metallographic surface preparation) of the sur-
face of AISI-304L steel specimens SMATed for various durations by using 3
and 8 mm diameter balls. Micrographs show the indentation marks formed
by the 25% balls of a)-c) 3 mm and d)-f) 8 mm diameter. SMAT duration is
used as the process variable: a), d) 20 s, b), e) 80 s, c) 180 s and f) 230 s. 60

4.10 a) Peening intensity (PI) (which is calculated by using Eq. 4.1) for the spec-
imens SMATed for various durations by using various percentages of balls of
3 and 8 mm diameter size. b) Peening intensity (PI) and the volume percent
of α' phase at the surface of AISI-304L steel specimens SMATed for 60 min
by using various percentages of balls of 3 and 8 mm diameter. A constant
gap of 15 mm is used. .. 61

5.1 a) X-ray diffraction (XRD) pattern of NS, S1 and S2 specimens. Insets indi-
cate the broadening of peaks after SMAT, b) Grazing angle X-ray diffraction
(GA-XRD) pattern of NS, S1, S2 and S2P specimens. 73

5.2 a) Inverse pole figure (IPF) and b) phase map of the cross-sectional of S1
specimen. c) IPF and d) phase map of the cross-section of S2 specimen. 74

5.3 a) OCP or Erest potential variation respect to immersion duration of 1800 s
for S1, S2, S2P and NS specimens, b) potentiodynamic polarization curves
for S1, S2 and NS specimens, c) potentiodynamic polarization curves for S2,
S2P and NS specimens of AISI 2205 stainless steel in 3.5% NaCl solution. 76

5.4 a) Nyquist and b) Bode plots for NS, S1, S2 and S2P AISI 2205 stainless
steel specimens in in 3.5% NaCl solution. Randle circuit was used for the
best fitting of the experimental Nyquist impedance data. 78

5.5 Optical micrographs of the cross-section of the nitrided specimens: a) NSN1,
b) S1N1, c) S2N1, d) S2PN1, e) NSN2, f) S1N2, g) S2N2 and h) S2PN2.
Cross-section of the specimens is etched with Berahi etchant for 50 s. 80

5.6 a) Nitrided layer thickness and b) surface microhardness for NS, S1, S2 and
S2P specimens. .. 81

5.7 XRD pattern of the non-SMATed and SMATed specimens nitrided by using
a) cycle-N1 and b) cycle-N2. ... 82

5.8 Composition depth profile for a) Specimens nitrided by using cycle-N1 and b)
S2PN1 and S2PN2 for comparison of nitriding response of polished specimens
of AISI 2205 steel. ... 84
6.13 a) Magnified view of the XRD peaks of γ_N phase for the SMATed + Nitrided specimens and b) Nitrided layer thickness and surface hardness variation with respect to t_{eff} for S1N1, S2N1, S1N2 and S2N2 specimens. In (b), X-axis is not to the scale.

6.14 Optical micrographs of the cross-section of plasma nitrided specimens by using cycle-N3: a) NSN3, b) S1N3 and c) S2N3. d) Surface microhardness for non-SMATed and plasma nitrided specimens. e) Composition (for N and C) depth profile (determined by using GDOES) for SMATed and plasma nitrided specimens.

6.15 XRD patterns for the non-SMATed, SMATed (S1 and S2) and plasma nitrided (cycle-N3) AISI 304L steel specimens.

6.16 Schematic for nitrided layer formation for a) non-SMATed and b) SMATed AISI 304L steel specimens.