List of Figures

1.1 (a) Time series \(x(t) \) obtained from Lorenz equations for \(\sigma = 10, r = 30 \)
and \(b = 8/3 \). (b) The Lorenz attractor. ... 10
1.2 Spiral type pulsing of laser intensity. ... 12
1.3 Oscillations in the adsorbed species (a) \(CO \) and (b) \(O \), for \(CO \) oxidation
over Pd zeolite. .. 14
1.4 Evolution of the amplitude field for the CGL equation for \(D = 0.0035, \)
\(c_1 = -2 \) and \(c_2 = 2 \). .. 19
1.5 Snapshots showing \(CO \)-coverage for \(CO \) oxidation on Pt(110) for \(a = 0.84 \)
and \(b = 0.07 \) (a) stable spirals \((\epsilon = 0.07) \) (b) turbulent state
\((\epsilon = 0.1) \) .. 21
2.1 The Daubechies-4 wavelet basis functions. 35
2.2 Fluctuations in the standardized data for shear stress in PNIPAm so-
lution at \(T = 25^\circ C, \dot{\gamma} = 5 \, s^{-1} \). 37
2.3 Estimated power \(P_j \) in dyadic wavelet scales \(j \) for shear stress data for
PNIPAm solution at \(T = 25^\circ C, \dot{\gamma} = 5 \, s^{-1} \). 37
2.4 The denoised and standardized time series for shear stress. For PNIP-
Am solutions (a) \(T = 25^\circ C, \dot{\gamma} = 5 \, s^{-1} \) (b) \(T = 30^\circ C, \dot{\gamma} = 10 \, s^{-1} \);
and for Carrageenan solutions (c) \(T = 25^\circ C, \dot{\gamma} = 20 \, s^{-1} \) (d) \(T = 45^\circ C, \)
\(\dot{\gamma} = 20 \, s^{-1} \) (e) \(T = 45^\circ C, \dot{\gamma} = 50 \, s^{-1} \). 38
2.5 Three dimensional attractor for endo-exothermic CSTR. 40
2.6 The average mutual information for endo-exothermic CSTR. 42
2.7 The correlation sum for endo-exothermic CSTR. .. 43
2.8 The correlation dimension for endo-exothermic CSTR. ... 43
2.9 The Lyapunov exponents for endo-exothermic CSTR. .. 45
2.10 The first return map for the variable y in endo-exothermic CSTR. 48
2.11 The periodic orbits '1' and '01' extracted for endo-exothermic CSTR. 48
2.12 Endo-exothermic CSTR template. .. 52
2.13 Convergence of topological entropy h_t with period p. .. 53
2.14 Linking number calculations for the period-2 orbit '01' and period-3 '011' extracted from sheared polymer solution. ... 54
2.15 Template for sheared polymer solution. .. 55
3.1 (a-e) Simultaneous estimation of the respective parameter values, for the CSTR exhibiting chaotic dynamics. Case III (Table 3.1) takes more iterations to converge while case I, II take less. ... 67
3.2 Fitted transient curve (solid line) using estimated kinetic constants for A, B, C from the shown experimental data. ... 70
4.1 Evolved spatiotemporal data $u(n,j)$ for the CML (j spatial grid with $L = 60; M = 20$ snapshots. (a) Weak chaos ($F = 1.73, D_d = 0.4, D_c = 0.0$); (b) Traveling wave ($F = 1.5, D_d = 0.5, D_c = 0.0$); (c) Fully developed chaos ($F = 2.0, D_d = 0.4, D_c = 0.0$); (d) Convective turbulence ($F = 2.0, D_d = 0.4, D_c = 0.3$). ... 78
4.2 Spatiotemporal data for the variable $u^{(1)}(t,x)$ in the autocatalytic reaction-diffusion system with parameter values $f = 0.029, k = 0.0535, D_u = 0.00002, D_v = 0.0001$ with spatial length $L = 1$ spanning 160 spatial sites and $M = 128$ snapshots recorded at a time step $\Delta t = 0.1$ is shown. .. 80
4.3 The empirical eigenfunctions for the Gray-Scott model (a) $\phi_1^{(1)}$ and (b) $\phi_1^{(2)}$. (c) The eigenvalue spectra λ_i vs. KL-modes i.

4.4 Patterns obtained on simulation of the two-dimensional activator-inhibitor model.

4.5 The first three significant spatial basis functions for the two-dimensional activator-inhibitor model.

4.6 Eigenvalue spectra vs. the KL-modes for the two-dimensional activator-inhibitor model.

4.7 Reconstruction of a masked image using an ensemble of 35 images generated from the 2-D Gray-Scott model.

4.8 Reconstruction of a masked image using an ensemble of 35 masked images generated from the 2-D Gray-Scott model.

4.9 RMS error vs. KL-modes for masked image(100 x 100) using masked (A) and unmasked (B) ensemble of 35 snapshots for various percentage of masking.

4.10 Reconstruction of a noisy image using an ensemble of 35 noisy images generated from the 2-D Gray-Scott model.

5.1 Parameter estimation for convective turbulence. (a) Subsystem data for the central 31 lattice sites; (b,c,d) Simultaneous convergence to parameter estimates for F, D_d and D_c for arbitrary initial guesses (shown as y-axis labels) as iterations q proceed for minimizing the least square functional.

5.2 Data from the left ($F = 2.0$) and the right ($F = 1.9$) subsystems for the inhomogeneous CML. The vertical line at $j = 256$ marks the boundary; Other parameter values $D_d = 0.4$, $D_c = 0.3$.

5.3 Power $P(n_s)$ in the first mode of the temporal coefficients, normalized to the maximum, is plotted as a function of subsystem size n_s.

xi
5.4 (a), (c), (e) The wavelet functions (Daubechies-4) for the index \(\alpha \) taking values 5, 9 and 23. (b), (d), (f) The time dependent coefficients for the index \(\alpha \) taking values 5, 9 and 23.

5.5 The power spectrum \(P_j(t) \) with time \(t \) is shown for wavelet scales \(j \) computed for the spatiotemporal data shown in Figure 4.2.

5.6 The results of synchronization with wavelet basis functions. (a) known parameters (b) inaccurate parameters (c) inaccurate parameters but are simultaneously estimated with synchronization.