Contents

1 The Classical Multiple Linear Regression Under Multicollinearity 1
 1.1 The classical multiple linear regression model 2
 1.1.1 Introduction and least squares estimation 2
 1.2 Multicollinearity 5
 1.2.1 Effects of MC on OLS estimator 6
 1.2.2 Effects on extra sum of squares (ESSR) 9
 1.2.3 Effects on t-test 10
 1.3 Detecting MC 11
 1.3.1 Variance inflation factor and tolerance 12
 1.3.2 Eigenvalues, condition index (CI) and condition number (CN) 14
 1.3.3 Indicators based on path coefficients 15
 1.4 Remedies of MC 17
 1.4.1 Biased estimation 17
 1.4.2 Use of prior information 21
 1.4.3 Selection of variables 21

2 Developing biased Estimators as Alternative to Least Squares Estimator 23
 2.1 \hat{A} estimator 24
 2.1.1 Criteria used in the comparison of biased estimation 26
 2.1.2 Comparison of the \hat{A} estimator with other estimators 28
2.1.3 Simulation results ... 35
2.1.4 Numerical example ... 37
2.2 New types of shrinkage estimator 43
 2.2.1 Statistical properties of the proposed shrinkage estimators 45
 2.2.2 Comparisons among the shrinkage estimators 47
 2.2.3 The generalized shrinkage estimator (GSE) 48
 2.2.4 The choice of the shrinkage parameter 49
 2.2.5 Monte Carlo simulations 53

3 Statistical Inference on Shrinkage Parameters of Biased Estimators 58
 3.1 The probability distribution of shrinkage parameters of biased estimators .. 59
 3.1.1 The probability distribution of shrinkage parameters in ridge regression 59
 3.1.2 The distribution of the shrinkage parameters of Liu-type estimators ... 61
 3.1.3 Numerical study .. 66
 3.2 Confidence interval for shrinkage parameters of biased estimators 68
 3.2.1 Confidence interval for shrinkage parameters in ridge regression ... 68
 3.2.2 Distribution of the estimators of the shrinkage parameters ... 70
 3.2.3 Confidence intervals and Venables method 70
 3.2.4 Numerical example 74
 3.2.5 The Monte Carlo simulation 74
 3.2.6 Confidence interval for shrinkage parameters in Liu-type estimator ... 76

4 Developing New Estimators Under Exact and Stochastic Linear Restrictions 78
 4.1 Concept of the restricted least squares estimator (RLS) .. 79
4.1.1 Statistical properties of RLS estimator 81
4.1.2 Consequences of incorrect restrictions 82
4.2 Restricted (k-d) class estimator ... 84
4.3 Superiority of the restricted (k — d) class estimator 86
 4.3.1 Comparison between the restricted (k — d) class estimator
 and (k — d) class estimator ... 86
 4.3.2 Comparison between the restricted (k — d) class estimator
 and the restricted Liu estimator 87
 4.3.3 Comparison between restricted (k—d) class estimator and
 restricted ridge regression estimator 89
4.4 The Concept of mixed estimator .. 91
4.5 Generalized least squares estimator 93
4.6 Generalized stochastic restricted ridge regression estimator 94
4.7 Superiority of the new estimator 98
4.8 Numerical example ... 102

5 Other Methods for Handling MC .. 108
 5.1 Principal components regression 109
 5.1.1 PCR as a biased estimator 109
 5.1.2 PCR as restricted least squares estimator 109
 5.2 Modified Liu-type estimator based on (r — k) class estimator ... 112
 5.3 Comparison of estimators ... 113
 5.3.1 Comparison between (r — (k — d)) class estimator and
 (r — d) class estimator ... 113
 5.3.2 Comparison between (r — (k — d)) class estimator and
 (r — k) class estimator .. 115
 5.3.3 Comparison between (r — (k — d)) class estimator and
 PCR estimator .. 116
 5.3.4 An example ... 117
B The Source Code of New Package

ix