CONTENTS

CHAPTER I: BACKGROUND AND MOTIVATION 01

1.1 Introduction 01

1.2 Advantages of laser technology 02

1.3 Requirements for laser processing 04

1.4 Laser driven processes 06
 1.4.1 Pyrolytic processing 07
 1.4.2 Photolytic processing 07

1.5 Laser induced chemical reactions 08
 1.5.1 Reactions on physically or chemically adsorbed layers 09
 1.5.2 Reactions in gaseous phase 11
 1.5.3 Reactions in liquid phase 12
 1.5.4 Reactions driven on the solid substrate 13

1.6 Laser chemical vapor deposition technique 13
 1.6.1 Nucleation 14
 1.6.2 Deposition from adsorbed layers 15
 1.6.3 Gas and liquid phase deposition 16

1.7 Laser physical vapor deposition technique 20
 1.7.1 Laser ablation deposition (LAD) 20
 1.7.2 Laser-solid interaction 21
 1.7.3 Transport of target material to substrate 23
 1.7.4 Material deposition onto the substrate 23
 1.7.5 Advantages of LAD 24
 1.7.6 Problems associated with current LAD technology 25
 1.7.7 Applications of LAD 26

1.8 Importance of deposition technology in modern fabrication processes 28
 1.8.1 Perspective for the future 29

1.9 Motivation 30

1.10 REFERENCES 31
CHAPTER II: EXPERIMENTAL SYSTEMS AND METHODS

SECTION A: LASER CHEMICAL VAPOR DEPOSITION AND LASER ABLATION DEPOSITION SYSTEMS

II.A.1 Pulsed excimer laser
 - **II.A.1.1 Principle**
 - **II.A.1.2 Pump mechanism**
 - **II.A.1.3 Gas mixture**
 - **II.A.1.4 Preionization**
 - **II.A.1.5 HV discharge circuitry**
 - **II.A.1.6 Modular control system**

II.A.2 CO₂ gas laser
 - **II.A.2.1 Mechanism**
 - **II.A.2.2 Design and operation**

II.A.3 Laser optics and beam delivery

II.A.4 Computer controlled x-y translation table

II.A.5 Laser chemical vapor deposition system
 - **II.A.5.1 Reaction chamber**
 - **II.A.5.2 Gas manifold**

II.A.6 Laser ablation deposition system

SECTION B: GENERAL CHARACTERIZATION TECHNIQUES

II.B.1 Low angle x-ray diffraction technique

II.B.2 Optical emission spectroscopy technique
 - **II.B.2.1 CSMA system**
 - **II.B.2.2 Detector**
 - **II.B.2.3 Detector controller**
 - **II.B.2.4 Gate pulse generator**
 - **II.B.2.5 General setup**
 - **II.B.2.6 System operation**

II.B.3 Scanning electron microscopy technique

II.B.4 Infrared spectroscopy technique

II.A.B REFERENCES