Table of Content

CHAPTER 1

INTRODUCTION

1.1 Antarctica the "Seventh Continent"

1.1.1 Antarctica Treaty System

1.1.2 The Madrid Protocol

1.2 India in Antarctica

1.2.1 Dakshin Gangotri

1.2.2 Indian Permanent Research Station "Maitri"

1.3 Environmental Impact in Antarctica

1.3.1 Contamination from Sewage

1.4 Ecological Effect of Sewage Discharge in Marine Environment in Antarctica

1.5 Why Wastewater Treatment and Management is Critical in Antarctica

1.5.1 Problems for Waste Treatment and Management in Antarctica

1.6 Significance of Present Study

1.7 Criterion for Selection of Wastewater Treatment System

1.8 Wastewater Treatment Systems

1.8.1 Lagooning in Oxidation Pond

1.8.2 Activated Sludge Treatment

1.8.3 Modified Aeration

1.8.4 Dispersed Growth Aeration

1.8.5 Contact Stabilization

1.8.6 High Rate Aerobic Treatment

1.8.7 Tricking Filtration

1.8.8 Spray Irrigation

1.8.9 Wet Combustion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.10</td>
<td>Anaerobic Digestion</td>
<td>20</td>
</tr>
<tr>
<td>1.8.11</td>
<td>Mechanical Aeration</td>
<td>20</td>
</tr>
<tr>
<td>1.8.12</td>
<td>Deep Well Injection</td>
<td>20</td>
</tr>
<tr>
<td>1.8.13</td>
<td>The Bio Disc System</td>
<td>21</td>
</tr>
<tr>
<td>1.9</td>
<td>Wastewater Systems in Practice in Various Stations in Antarctica</td>
<td>22</td>
</tr>
<tr>
<td>1.10</td>
<td>Treatment System at Maitri</td>
<td>26</td>
</tr>
<tr>
<td>1.11</td>
<td>Review of Literature</td>
<td>27</td>
</tr>
<tr>
<td>1.11.1</td>
<td>RBC Experiment</td>
<td>27</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Chemical Treatment and Tertiary Unit</td>
<td>32</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Operational condition of Wastewater Treatment Plant at Various Antarctic Stations</td>
<td>33</td>
</tr>
<tr>
<td>1.11.4</td>
<td>Water Quality Models</td>
<td>35</td>
</tr>
<tr>
<td>1.11.5</td>
<td>Sewage Discharge in Antarctica</td>
<td>37</td>
</tr>
<tr>
<td>1.12</td>
<td>Objectives of Present Study</td>
<td>39</td>
</tr>
</tbody>
</table>

CHAPTER 2..40

METHODOLOGY, SIMULATION AND PREDICTION ..40

2.1 Methodology ...40

2.2 Approach to Identify Problems ...40

2.3 Assessment of Water Abundance at Priyadarshini Lake41

2.3.1 Area Measurement ..41

2.3.2 Depth Measurement and Volume of Lake ..42

2.3.3 Additional Feed Water Measurement ...42

2.4 Waste Generation ..43

2.4.1 Sources of Gray Water in Maitri ..43

2.4.2 Liquid Waste Disposal and it's Consequences ...43

2.4.3 Solid Waste Contamination in Lake ...44

2.5 Establishment of Environmental Laboratory at Maitri45
WATER CHARACTERIZATION IT'S PREDICTION AND EFFICACY IMPROVISATION OF RBC

3.1 Lake System around Maitri Station
 3.1.1 Significance of Earlier Study

3.2 Water and Wastewater Sample Analysis during Various Expeditions by Expedition Member (1994 and 1995)

3.3 Results
 3.3.1 Water Characteristics of Priyadarshini Lake, Glacial and Control Lakes around Maitri Station
 3.3.1.1 pH
 3.3.1.2 Turbidity
 3.3.1.3 Temperature
 3.3.1.4 Conductivity
 3.3.1.5 Alkalinity
 3.3.1.6 Total Hardness
 3.3.1.7 Calcium Hardness
 3.3.1.8 Total Dissolved Solids (TDS)
 3.3.1.9 Total Suspended Solids
 3.3.1.10 Chloride
 3.3.1.11 Sulfate
 3.3.1.12 Nitrate
 3.3.1.13 Ammonia and Nitrite
 3.3.1.14 Total Phosphate
 3.3.1.15 Dissolved Oxygen
 3.3.1.16 Biochemical Oxygen Demand (BOD)
 3.3.1.17 Chemical Oxygen Demand (COD)
 3.3.1.18 Total Organic Carbon (TOC)
 3.3.1.19 Oil and Grease and Hydrocarbon
 3.3.1.20 Sodium and Potassium
 3.3.1.21 Cadmium
 3.3.1.22 Copper
 3.3.1.23 Chromium
 3.3.1.24 Lead
 3.3.1.25 Iron
3.3.1.26 Manganese ... 79
3.3.1.27 Zinc ... 79
3.3.2 Wastewater Analysis of RBC at Maitri Station 80
 3.3.2.1 pH ... 80
 3.3.2.2 Suspended Solids .. 81
 3.3.2.3 Chloride .. 81
 3.3.2.4 Sulfate ... 81
 3.3.2.5 Phosphate ... 81
 3.3.2.6 Ammonia .. 82
 3.3.2.7 Nitrite ... 82
 3.3.2.8 Nitrate ... 82
 3.3.2.9 Biochemical Oxygen Demand .. 83
 3.3.2.10 Chemical Oxygen Demand .. 83
 3.3.2.11 Oil and Grease .. 83
 3.3.2.12 Hydrocarbon ... 83
 3.3.2.13 Cadmium ... 84
 3.3.2.14 Copper ... 84
 3.3.2.15 Chromium .. 84
 3.3.2.16 Lead .. 84
 3.3.2.17 Iron .. 85
 3.3.2.18 Zinc ... 85

3.4 Rotating Biological Contactor at Maitri ... 86
 3.4.1 Design Features of RBC — Installed at Maitri 87
 3.4.1.1 Primary Settlement, Sludge Storage and Digestion Zone 87
 3.4.1.2 Biozone ... 88
 3.4.1.3 Discs and Drive .. 88
 3.4.1.4 Secondary Settlement and Sludge Storage Zone 89

3.5 Present Operational Conditions ... 90
 3.5.1 Collection and Storage Pond ... 91
 3.5.2 Effluent Discharge and Priyadarshini Lake Contamination 91

3.6 Water Balance at “Maitri” Station .. 93
 3.6.1 Water Intake System ... 93
 3.6.2 Distribution of Water .. 93
3.6.3 Wastewater Production

3.7 Priyadarshini Lake Water Assessment

3.7.1 Volume of the Lake

3.8 Water Sample Collection and Analysis around Maitri (Year 2000 and 2004)

3.8.1 Water Sample Analysis in the Year 2000

3.8.2 Water Sample Analysis in the Year 2004

3.9 Characteristics of Wastewater Generation at Maitri

3.10 Wastewater flow Rates and Composition

3.11 Wastewater Sample Analysis of RBC

3.12 Efficacy Improvisation at Site

3.12.1 Tertiary Treatment of Wastewater at Site

3.13 Results

3.13.1 Priyadarshini Lake Water Assessment

3.13.2 Water Characteristics of Lakes around Maitri Station

3.13.2.1 Turbidity

3.13.2.2 Temperature

3.13.2.3 Conductivity

3.13.2.4 Alkalinity

3.13.2.5 Total Hardness

3.13.2.6 Calcium Hardness

3.13.2.7 Chloride

3.13.2.8 Total Dissolved Solids (TDS)

3.13.2.9 Total Suspended Solids

3.13.2.10 Sulfate

3.13.2.11 Nitrate

3.13.2.12 Total Phosphate

3.13.2.13 Dissolved Oxygen

3.13.2.14 Biochemical Oxygen (BOD) Demand

3.13.2.15 Chemical Oxygen Demand (COD)

3.13.2.16 Oil and Grease and Hydrocarbon
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.13.2.17</td>
<td>Heavy Metals</td>
<td>128</td>
</tr>
<tr>
<td>3.13.2.18</td>
<td>Sodium</td>
<td>128</td>
</tr>
<tr>
<td>3.13.2.19</td>
<td>Potassium</td>
<td>128</td>
</tr>
<tr>
<td>3.13.2.20</td>
<td>Iron</td>
<td>129</td>
</tr>
<tr>
<td>3.13.2.21</td>
<td>Manganese</td>
<td>129</td>
</tr>
<tr>
<td>3.13.2.22</td>
<td>Lead</td>
<td>130</td>
</tr>
<tr>
<td>3.13.2.23</td>
<td>Zinc</td>
<td>130</td>
</tr>
<tr>
<td>3.13.2.24</td>
<td>Cadmium</td>
<td>131</td>
</tr>
<tr>
<td>3.13.2.25</td>
<td>Copper</td>
<td>131</td>
</tr>
<tr>
<td>3.13.2.26</td>
<td>Chromium</td>
<td>131</td>
</tr>
<tr>
<td>3.13.2.27</td>
<td>Nickel</td>
<td>131</td>
</tr>
<tr>
<td>3.13.2.28</td>
<td>Cobalt</td>
<td>132</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Wastewater Analysis of RBC at Maitri Station</td>
<td>132</td>
</tr>
<tr>
<td>3.13.3.1</td>
<td>pH</td>
<td>132</td>
</tr>
<tr>
<td>3.13.3.2</td>
<td>Dissolved Oxygen (DO)</td>
<td>133</td>
</tr>
<tr>
<td>3.13.3.3</td>
<td>Turbidity</td>
<td>133</td>
</tr>
<tr>
<td>3.13.3.4</td>
<td>Conductivity</td>
<td>134</td>
</tr>
<tr>
<td>3.13.3.5</td>
<td>Total and Suspended Solids</td>
<td>134</td>
</tr>
<tr>
<td>3.13.3.6</td>
<td>Volatile Solids</td>
<td>135</td>
</tr>
<tr>
<td>3.13.3.7</td>
<td>Chemical Oxygen Demand</td>
<td>135</td>
</tr>
<tr>
<td>3.13.3.8</td>
<td>Biochemical Oxygen Demand</td>
<td>136</td>
</tr>
<tr>
<td>3.13.3.9</td>
<td>Alkalinity</td>
<td>137</td>
</tr>
<tr>
<td>3.13.3.10</td>
<td>Acidity</td>
<td>137</td>
</tr>
<tr>
<td>3.13.3.11</td>
<td>Chloride</td>
<td>137</td>
</tr>
<tr>
<td>3.13.3.12</td>
<td>Ammonia</td>
<td>137</td>
</tr>
<tr>
<td>3.13.3.13</td>
<td>Nitrate</td>
<td>138</td>
</tr>
<tr>
<td>3.13.3.14</td>
<td>Phosphate</td>
<td>138</td>
</tr>
<tr>
<td>3.13.3.15</td>
<td>Oil and Grease</td>
<td>138</td>
</tr>
<tr>
<td>3.13.3.16</td>
<td>Hydrocarbon</td>
<td>139</td>
</tr>
<tr>
<td>3.13.3.17</td>
<td>Phenol</td>
<td>139</td>
</tr>
<tr>
<td>3.13.3.18</td>
<td>Cadmium</td>
<td>140</td>
</tr>
<tr>
<td>3.13.3.19</td>
<td>Copper</td>
<td>140</td>
</tr>
<tr>
<td>3.13.3.20</td>
<td>Chromium</td>
<td>140</td>
</tr>
<tr>
<td>3.13.3.21</td>
<td>Lead</td>
<td>140</td>
</tr>
<tr>
<td>3.13.3.22</td>
<td>Iron</td>
<td>141</td>
</tr>
</tbody>
</table>
3.16.1 Variation of Dissolve Oxygen .. 153
3.16.2 Variation of Ultimate Biological Oxygen Demand 154
3.16.3 Variation of Ammonia ... 155
3.16.4 Variation of Nitrate ... 155
3.16.5 Variation of Total Nitrogen ... 156
3.16.6 Variation of Total Organic Nitrogen ... 156

3.17 Discussion ... 157
3.17.1 Lake Water Sample .. 157
3.17.2 Lake Water Quality Prediction ... 166

CHAPTER 4 ... 168

EXPERIMENTAL SETUP .. 168

4.1 Approach for Development of RBC models .. 168
4.1.1 Assumption in Designing the Laboratory Scale Model 168

4.2 Design and Experimental Setup of Single Stage Laboratory Scale RBC Unit ... 169
4.2.1 Operating Condition .. 172
4.2.1.1 Oxygen Content .. 173
4.2.2 Simulation of Wastewater Generation ... 174
4.2.2.1 Kitchen Waste .. 174
4.2.2.2 Laundry/Bathroom/Urinal Wastewater 174
4.2.3 Microbe Generation on Biodisc, Various Combinations of Experiments ... 175
4.2.4 Experiment Scenario ... 177

4.3 Tertiary Treatment ... 179
4.3.1 Alum Dosing .. 179
4.3.2 Activated Carbon (Charcoal) ... 180

4.4 Analysis Results ... 182

4.5 Results .. 192
4.5.1 Temperature Variation inside RBC Cell .. 192
4.5.2 pH ... 193
4.5.3 Conductivity and Turbidity .. 194
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.4</td>
<td>Temperature and Dissolved Oxygen (DO)</td>
<td>195</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Total Solids, Suspended Solids and Dissolved Solids</td>
<td>196</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Volatile Suspended Solid (VSS) and Volatile Dissolved Solid (VDS)</td>
<td>198</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Ammonia Nitrate and Total Phosphate</td>
<td>199</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)</td>
<td>200</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Sodium, Potassium and Calcium</td>
<td>201</td>
</tr>
<tr>
<td>4.5.10</td>
<td>Chromium (Cr), Manganese (Mn) and Iron (Fe)</td>
<td>203</td>
</tr>
<tr>
<td>4.5.11</td>
<td>Nickle (Ni) and Copper (Cu)</td>
<td>204</td>
</tr>
<tr>
<td>4.5.12</td>
<td>Zinc (Zn), Cadmium (Cd) and Lead (Pb)</td>
<td>205</td>
</tr>
</tbody>
</table>

4.6 DISCUSSION

4.6.1 First Experiment (Separate Treatment) 217
4.6.2 Second Experiment (Partial Two Stage Waste Treatment) 222
4.6.3 Third experiment (Partial Two Stage Waste Treatment Extended with Tertiary Treatment) 228

CHAPTER 5

DESIGN AND APPLICATION OF ADVANCE TREATMENT PROCESS 232

5.1 Plant Design in Antarctica: Factual Conditions 232
5.1.1 Extreme Conditions 232
5.1.2 Load Fluctuation 232
5.1.3 Modular Design 233

5.2 Problem of Wastewater Discharge at Maitri Station 233
5.2.1 At India Bay 234
5.2.2 Ice Pit 234

5.3 Option for Final Discharge of Wastewater 234
5.3.1 Improving the Effluent Quality and Discharge on Land 234

5.4 Ancillary Unit Design Requirement for RBC's 234
5.4.1 Equalization Tank 235
5.4.1.1 Mass curve for B1 RBC 235
5.4.1.2 Mass Curve for B3 RBC 236
5.4.2 Fats, Oil and Grease Trap 237
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3</td>
<td>Sludge Dewatering</td>
<td>239</td>
</tr>
<tr>
<td>5.4.3.1</td>
<td>Imperforate Basket centrifuge</td>
<td>240</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Tertiary Treatment Unit</td>
<td>241</td>
</tr>
<tr>
<td>5.4.4.1</td>
<td>Coagulation by Alum Dosing</td>
<td>241</td>
</tr>
<tr>
<td>5.4.4.2</td>
<td>Activated Carbon Treatment</td>
<td>242</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Operational Performance of GAC Contactor (Laboratory Experiment)</td>
<td>245</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Design of Field scale GAC Column</td>
<td>248</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Membrane Filtration</td>
<td>249</td>
</tr>
<tr>
<td>5.4.8</td>
<td>UV Disinfection</td>
<td>251</td>
</tr>
<tr>
<td>5.5</td>
<td>Outcome</td>
<td>251</td>
</tr>
</tbody>
</table>

SUMMARY AND CONCLUSIONS .. 253

REFERENCES ... 259

Appendix-1 .. 278

Appendix-2 .. 282