List of Figures

2.1 Single particle energy gap G_L as a function of $1/L$ of model (2.16) for $U = 2$ and 8 with density $\rho = 1$. 34

2.2 Finite size scaling of single particle energy gap $L G_L$ versus U for different lengths showing SF to MI quantum phase transition. The plots of $L G_L$ coalesce below $U < U_C \approx 3.4$. 35

2.3 Variation of SF correlation function $\Gamma^{SF}(r)$ with respect to r for $U = 2$. The continuous line is the fit $\Gamma^{SF}(r) \sim r^{-K/2}$ which gives the LL parameter $K = 0.33 \pm 0.01$. 37

2.4 Variation of Luttinger Liquid parameter K with respect to the onsite interaction U for model (2.16). 37

2.5 Finite size scaling of correlation length L/ζ^S_F versus U for different lengths showing SF to MI quantum phase transition. The plots of L/ζ_L coalesce below $U < U_C \approx 3.4$. 38

2.6 Boson density ρ and compressibility κ as a function of chemical potential μ for $U = 2$. 39
2.7 Boson density ρ and compressibility κ as a function of chemical potential μ for $U = 8$. .. 40

2.8 (a) Phase diagram of Bose-Hubbard model (2.16) for $\rho = 1$ and (b) the variation of gap $G = \mu^+ - \mu^-$ in the Mott insulator phase. .. 41

4.1 Correlation function $\Gamma^{SF}(r)$ is plotted against r for non-interacting ($V = 0$) pure system. The continuous line is the fit with $\Gamma(r)^{SF} \sim r^{-K/2}$ which gives us $K = 1.0 \pm 0.03$ 56

4.2 Variation of LL parameter K with respect to V which shows $K = 2$ at $V_C = 2$. .. 56

4.3 Finite size scaling of gap LG_L is plotted against V for different lengths. Different curves coalesce for $V < V_C = 2$ showing SF-DW transition. .. 57

4.4 Variation of number density $\rho_i = \langle n_i \rangle$ with respect to i for $V = 3$ showing DW phase. The DW oscillation dye out at the center due to the fact that the system size is even and has a left-right symmetry. .. 57

4.5 Gap G_L is plotted against $1/L$ for $\lambda = 0.0$ and $\lambda = 0.5$. 59

4.6 Variation of G_∞ with respect to λ. .. 60
4.7 Finite size scaling of gap \(LG_L \) is plotted against \(\lambda \) for \(V = 0 \) for different lengths. The coalescence of different curves is lost as soon as \(\lambda \) is finite, which shows opening up of the single particle energy gap for \(\lambda > 0 \). .. 60

4.8 Variation of number density \(\rho_i \) with respect to lattice site \(i \) confirming the DW phase for \(V = 0, \lambda = 0.5 \). .. 61

4.9 Finite size scaling of gap \(LG_L \) is plotted against \(\lambda \) for \(V = 1.0 \) for different lengths. This also shows opening up of the gap for \(\lambda > 0 \). .. 61

4.10 Phase Diagram of model (4.1) with finite periodic commensurate potential \(\lambda \). .. 62

4.11 Finite size scaling of correlation length \(L/\zeta^S_F \) is plotted against \(V \) for \(\lambda = 0.2 \) and for different lengths. Coalescence of different plots below \(V < V_C = 2.0 \) shows opening of gap for \(V > V_C \). .. 63

4.12 \(L/\zeta^S_F \) is plotted against \(V \) for different lengths keeping \(\lambda = 0.6 \). 67

4.13 Plot of LL parameter \(K \) versus \(V \) for \(\lambda = 0.6 \) which shows
\[
K = 2 \text{ at } V_C = 2.05.
\] .. 67

4.14 \(L/\zeta^S_F \) is plotted against \(V \) for \(\lambda = 0.8 \), for different lengths showing opening of gap at \(V_C = 2.1 \). .. 68
4.15 Plot of LL parameter K versus V for $\lambda = 0.8$ which shows

\[K = 2 \text{ at } V_C = 2.1. \] 68

4.16 L/ζ^S_{L} is plotted against V for $\lambda = 1.5$, for different lengths.

This shows opening of gap at $V_C = 2.5$. 69

4.17 Plot of LL parameter K versus V for $\lambda = 0.8$ which shows

\[K = 2 \text{ at } V_C = 2.25. \] 69

4.18 Variation of number density ρ_i with respect to lattice site i for $V = 1.0$ and $V = 3.6$ which confirms DW phase for $V = 3.6$.

The DW oscillation dye out at the center due to the fact that the system size is even and has a left-right symmetry. 70

4.19 DW order parameter is plotted against $1/L$ for $\lambda = 0.6$. V vary from below to above between 1.0 to 4.6 at the step of 0.2. 70

4.20 Finite size scaling of gap LG_L is plotted against λ for $V = 4.0$ for different lengths. This shows opening up of the gap for $\lambda < 3.0$. 71

4.21 Phase diagram of model (4.1) when periodic incommensurate potential is finite in the hard core limit. 71

5.1 Plot of finite size scaling of correlation length, L/ζ^S_{L} as function of λ for $U = 2.5$. The plots for different lengths, coalesce below $\lambda = \lambda_C \sim 2.6$ which yields opening of gap at $\lambda_C \sim 2.6$. 75
5.2 Plot of finite size scaling of correlation length, L/ξ_{L}^{SF} as function of λ for $U = 5$. The plots for different lengths, coalesce when $2 < \lambda < 3$, showing two phase transitions, Mott insulator to superfluid and superfluid to density wave, when strength of local chemical potential λ is increased. 76

5.3 Plot of local number density ρ_i against i for $U = 5.0$ and two values of λ. For $\lambda = 3.8$, the oscillation in ρ_i suggest a DW phase. However, no such oscillations are seen for $\lambda = 0.2$ and ρ_i remains constant. 77

5.4 Plot of finite size scaling of correlation length, L/ξ_{L}^{SF} as function of λ for $U = 7.5$. The plots for different lengths coalesce for $3.5 < \lambda < 4.2$, thus showing two phase transitions, MI to SF and SF to DW as λ is increased. 77

5.5 Plot of finite size scaling of correlation length, L/ξ_{L}^{SF} as function of λ for $U = 12.0$. The region where plots of different length coalesce has reduced compare to Fig. 5.4. However, the superfluid phase is still exist between MI and DW phases. 78

5.6 Plot of finite size scaling of correlation length, L/ξ_{L}^{SF} as function of λ for $U = 20.0$. In this case system does not enter in to the SF phase as λ is increased and the transition is direct from MI to DW. 80
5.7 Phase diagram of model (5.1) with periodic commensurate potential taking $Q = \pi$. ... 80

5.8 Variation of $\mu_i = \lambda \cos(Qi)$ as function of i for $\lambda = 1$. The solid line is for $Q = \frac{1 + \sqrt{5}}{2}$, the golden mean and dashed line is for $Q = \frac{11 + \sqrt{5}}{8}$, one fifth of the golden mean. 83

5.9 Variation of $\mu_i^{\text{eff}} = \mu - \lambda \cos(Qi)$ and ρ_i as function of i for
$\lambda = 0.6$, $U = 2$ and $\rho = 1$. 86

5.10 Variation of ρ_i as function of $\mu_i^{\text{eff}} = \mu - \lambda \cos(Qi)$ for $\lambda = 0.6$,
$U = 2$ and $\rho = 1$. .. 87

5.11 Variation of κ_i as function of $\mu_i^{\text{eff}} = \mu - \lambda \cos(Qi)$ for $\lambda = 0.6$,
$U = 2$ and $\rho = 1$. .. 87

5.12 Variation of κ_i as function of i for $\lambda = 0.6$, $U = 2$ and $\rho = 1$. 88

5.13 Variation of $\mu_i^{\text{eff}} = \mu - \lambda \cos(Qi)$ and ρ_i as function of i for
$\lambda = 1.5$, $U = 2$ and $\rho = 1$. 90

5.14 Variation of ρ_i as function of $\mu_i^{\text{eff}} = \mu - \lambda \cos(Qi)$ for $\lambda = 1.5$,
$U = 2$ and $\rho = 1$. .. 90

5.15 Variation of ρ_i as function of μ_i^{eff} for different values of λ, but
keeping $U = 2$ and $\rho = 1$. .. 91

5.16 Variation of κ_i as function of μ_i^{eff} for $\lambda = 4$, $U = 2$ and $\rho = 1$. 92

5.17 Variation of κ_i as function of i for $\lambda = 4$, $U = 2$ and $\rho = 1$. 92
5.18 Variation of ρ_i as function of i for the same set of λ as Fig. 5.15, but keeping $U = 2$ and $\rho = 1$. 93

5.19 Variation of ρ_i and $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for $\lambda = 0.6$, $U = 12$ and $\rho = 0.84$. .. 96

5.20 Variation of ρ_i as function of μ_i^{eff} for $\lambda = 0.6$, $U = 12$ and $\rho = 0.84$. .. 96

5.21 Variation of κ_i as function of μ_i^{eff} for $\lambda = 0.6$, $U = 12$ and $\rho = 0.84$. .. 97

5.22 Variation of κ_i as function of i for $\lambda = 0.6$, $U = 12$ and $\rho = 0.84$. 97

5.23 Variation of ρ_i and $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for (a) $\lambda = 1.0$, (b) $\lambda = 1.5$, (c) $\lambda = 2.0$ and (d) $\lambda = 2.5$ keeping $U = 12$ and $\rho = 0.84$. .. 99

5.24 Variation of ρ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for (a) $\lambda = 1.0$, (b) $\lambda = 1.5$, (c) $\lambda = 2.0$ and (d) $\lambda = 2.5$ keeping $U = 12$ and $\rho = 0.84$. .. 100

5.25 Variation of κ_i as function of μ_i^{eff} for $\lambda = 2.5$, $U = 12$ and $\rho = 0.84$. .. 101

5.26 Variation of κ_i as function of i for $\lambda = 2.5$, $U = 12$ and $\rho = 0.84$.101

5.27 Variation of ρ_i and $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ as a function of i for different values of λ keeping $U = 6$ and $\rho = 0.84$. 103
5.28 Variation of ρ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for different values of λ keeping $U = 6$ and $\rho = 0.84$. .. 104

5.29 Variation of ρ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for different values of λ keeping $U = 2$ and $\rho = 1$. .. 107

5.30 Variation of ρ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for different values of λ keeping $U = 12$ and $\rho = 0.84$. .. 108

5.31 Variation of ρ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for different values of λ keeping $U = 6$ and $\rho = 0.84$. .. 109

5.32 Variation of ρ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for different values of λ keeping $U = 12$ and $\rho = 1$. .. 111

5.33 Variation of κ_i versus $\mu_i^{\text{eff}} = \mu - \lambda \cos(Q_i)$ for different values of λ keeping $U = 12$ and $\rho = 1$. .. 112

5.34 Variation of ρ_i and κ_i versus i for different values of λ keeping $U = 12$ and $\rho = 1$. (a) ρ_i for $\lambda = 3.5$, (b) κ_i for $\lambda = 3.5$, (c) ρ_i for $\lambda = 4$, (d) κ_i for $\lambda = 4$. .. 112

5.35 Variation of ρ_i versus $\mu_i = \lambda \cos(Q_i)$ for different values of λ, but for $U = 7$. .. 114

5.36 Variation of ρ_i versus i for same set of parameter as Fig. 5.35. 115

5.37 Variation of κ_i versus $\mu_i = \lambda \cos(Q_i)$ for same set of parameters as Fig. 5.35. .. 116
5.38 Variation of ρ_i versus μ_i keeping $\lambda = 1.5$, but varying U as given in the figure. 117

5.39 Variation of ρ_i versus μ_i keeping $\lambda = 2$, but varying U as given in the figure. 117

6.1 Finite size scaling of L/ζ^S_L versus U for $\lambda = 0.4$ showing gapped to gapless phase transition at $U_C \sim 4.0$. 126

6.2 Finite size scaling of $L_G L$ versus U for $\lambda = 0.4$ which again showing gapped to gapless phase transition at $U_C \sim 4.0$. ... 127

6.3 Variation of K with respect to U for $\lambda = 0.4$. The regions, respectively, below and above $K = 2/3$ is the superfluid and Bose glass 127

6.4 Finite size scaling of L/ζ^S_L versus U for $\lambda = 0.6$ showing gapped to gapless phase transition at $U_C \sim 4.3$. 128

6.5 Finite size scaling of $L_G L$ versus U for $\lambda = 0.6$ which again showing gapped to gapless phase transition at $U_C \sim 4.3$. ... 128

6.6 Variation of K with respect to U for $\lambda = 0.6$. The regions, respectively, below and above $K = 2/3$ is the superfluid and Bose glass 129
6.7 Variation of LL parameter K with respect to λ for $U = 2$.

The regions, respectively, below and above $K = 2/3$ is the superfluid and Bose glass. .. 129

6.8 Phase diagram of model (6.1) in the presence of random local potential. There is no direct MI to SF transition and a small BG phase always intervene between them. 130

6.9 Variation of ρ_i as function of μ_i^{eff} for $\lambda = 0.6$, $U = 2$ and $\rho = 1$ for three different realizations of random distribution along with that for pure system, $\lambda = 0$. 133

6.10 Comparison of ρ_i as function of μ_i^{eff} for $\lambda = 0.6$, $U = 2$ and $\rho = 1$. (a) and (b) for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$ and $Q = \frac{1+\sqrt{5}}{10}$ respectively. (c) is for random and (d) is for pure, i.e., $\lambda = 0$. .. 134

6.11 Comparison of ρ_i as function of μ_i^{eff} for $\lambda = 3$, $U = 2$ and $\rho = 1$. (a) and (b) for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$ and $Q = \frac{1+\sqrt{5}}{10}$ respectively. (c) is for random and (d) is for pure, i.e., $\lambda = 0$. .. 134

6.12 Comparison of ρ_i as function of μ_i^{eff} for $\lambda = 5$, $U = 2$ and $\rho =$

1. (a) and (b) for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$ and $Q = \frac{1+\sqrt{5}}{10}$ respectively. (c) is for pure, i.e., $\lambda = 0$ and (d) is for random. .. 135
6.13 Variation of ρ_i as function of μ_i^{eff} for $\lambda = 1$, $U = 12$ and
$\rho = 0.84$ for three different realizations of random distribution
along with that for pure system, $\lambda = 0$ 136

6.14 Comparison of ρ_i as function of μ_i^{eff} for $\lambda = 1$, $U = 12$ and
$\rho = 0.84$. (a) and (b) for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$ and $Q = \frac{1+\sqrt{5}}{10}$ respectively. (c) is for random and (d) is for pure, i.e., $\lambda = 0$. 137

6.15 Comparison of ρ_i as function of μ_i^{eff} for $\lambda = 2$, $U = 12$ and
$\rho = 0.84$. (a) and (b) for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$ and $Q = \frac{1+\sqrt{5}}{10}$ respectively. (c) is for random and (d) is for pure, i.e., $\lambda = 0$. 137

6.16 ρ_i versus μ_i^{eff} for Fibonacci potential for $U = 2$, $\lambda = 1$
along with that for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$,
Golden mean. 143

6.17 ρ_i versus μ_i^{eff} for Fibonacci potential for $U = 12$, $\lambda = 1$
along with that for incommensurate potential with $Q = \frac{1+\sqrt{5}}{2}$,
Golden mean. 143