LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Computation costs of the tasks in Figure 1.2 on three processors</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Taxonomy of list-scheduling algorithms developed for homogeneous processors</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Taxonomy of list-scheduling algorithms developed for heterogeneous processors</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Taxonomy of cluster-based task scheduling algorithms developed for homogeneous and heterogeneous processors</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>Computation costs of the tasks in Figure 2.3 on two processors</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Taxonomy of task duplication-based scheduling algorithms developed for homogeneous processors</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>Taxonomy of task duplication-based scheduling algorithms developed for heterogeneous processors</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Computation costs of the tasks in Figure 3.2 on three processors</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>(DLC, ULC, LC, ACC) values and the priority computed for the task graph shown in Figure 3.2</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>(EST) and (EFT) values computed for the task graph shown in Figure 3.2 on three processors using HPS algorithm</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>(ACC, DTC, RPT) values and the priority computed for the task graph shown in Figure 3.2</td>
<td>80</td>
</tr>
<tr>
<td>3.5</td>
<td>(EST) and (EFT) values computed for the task graph shown in Figure 3.2 on three processors using PETS algorithm</td>
<td>81</td>
</tr>
<tr>
<td>3.6</td>
<td>Pair-wise comparison of HPS, PETS, HEFT, HCPT, CPOP and DLS algorithms</td>
<td>95</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>Computation costs of the tasks in Figure 4.2 on three processors</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>$NIST$, ACC values and the priority computed for the task graph shown in Figure 4.2</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>EST and EFT values computed for the task graph shown in Figure 4.2 using HPDCS algorithm</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>Frequency of quality of schedules when $\alpha \ll 1.0$</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Frequency of quality of schedules when $\alpha \gg 1.0$</td>
<td>108</td>
</tr>
<tr>
<td>4.6</td>
<td>Computation costs of the tasks in Figure 4.10 on four processors</td>
<td>113</td>
</tr>
<tr>
<td>4.7</td>
<td>$ACCIS$, $NIST$ values and the priority computed for the task graph shown in Figure 4.10</td>
<td>114</td>
</tr>
<tr>
<td>4.8</td>
<td>EST and EFT values computed for the task graph shown in Figure 4.10 using HCDBTS algorithm</td>
<td>116</td>
</tr>
<tr>
<td>5.1</td>
<td>Computation costs of the tasks in Figure 5.2 on three processors</td>
<td>125</td>
</tr>
<tr>
<td>5.2</td>
<td>PCC and SCC values computed for the task graph shown in Figure 5.2</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>Initial population of fifteen chromosomes generated for the task graph shown in Figure 5.2</td>
<td>130</td>
</tr>
<tr>
<td>6.1</td>
<td>Computation costs of the tasks in Figure 6.2 on three processors</td>
<td>151</td>
</tr>
<tr>
<td>6.2</td>
<td>DLC, ULC, LC, ACC values and the priority computed for the task graph shown in Figure 6.2</td>
<td>152</td>
</tr>
<tr>
<td>6.3</td>
<td>EST and EFT values computed for the task graph shown in Figure 6.2 using HPSM algorithm</td>
<td>153</td>
</tr>
<tr>
<td>6.4</td>
<td>Energy consumed by the processors p_1, p_2 and p_3 and the processor selected for executing the tasks shown in Figure 6.2</td>
<td>156</td>
</tr>
<tr>
<td>6.5</td>
<td>System attributes used for simulation of experimental results in MCS</td>
<td>157</td>
</tr>
</tbody>
</table>