List of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Rice varieties grown in Iran</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Rice imports in Iran</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Availability of arable land</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Imbalanced due to chemical fertilizer</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Health hazards</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Plant uptake of micronutrients</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Geographical characteristics of the experimental field</td>
<td>10</td>
</tr>
<tr>
<td>1.7.1 Location</td>
<td>10</td>
</tr>
<tr>
<td>1.7.2 Climate conditions</td>
<td>11</td>
</tr>
<tr>
<td>1.7.3 Drainage</td>
<td>12</td>
</tr>
<tr>
<td>1.8 Future Research Required for Rice Growth</td>
<td>14</td>
</tr>
<tr>
<td>1.9 Ideal conditions for rice growth</td>
<td>15</td>
</tr>
<tr>
<td>1.9.1 Sunlight</td>
<td>15</td>
</tr>
<tr>
<td>1.9.2 Air humidity</td>
<td>15</td>
</tr>
<tr>
<td>1.9.3 Water temperature</td>
<td>16</td>
</tr>
<tr>
<td>1.9.4 Environmental temperature</td>
<td>16</td>
</tr>
<tr>
<td>1.9.5 Atmospheric C\textsubscript{0}</td>
<td>17</td>
</tr>
<tr>
<td>1.9.6 Latitude</td>
<td>17</td>
</tr>
<tr>
<td>1.9.7 pH and soil texture</td>
<td>18</td>
</tr>
<tr>
<td>1.9.8 Soil fertility</td>
<td>19</td>
</tr>
</tbody>
</table>
1.9.9 Water resource .. 19
1.10 Review of literature ... 19
1.11 Drought conditions in Iran 21
1.12 Lowland and Upland rice 21
1.13 Crop rotation and Ratooning in Mazandaran 24
1.14 Research on the tissue culture of rice in Iran 25
1.15 Objectives ... 27

CHAPTER 2: BIOGEOCHEMICAL CYCLES OF NUTRIENT ELEMENTS 29

2.1 Response of crops to the fertilizer 29
2.2 The nitrogen cycle ... 31
2.3 The phosphorous cycle .. 33
2.4 The potassium cycle .. 35
2.5 The zinc cycle .. 36
2.6 The copper cycle .. 38
2.7 The manganese cycle .. 39
2.8 The iron cycle .. 40
2.9 The ideal conditions of nutrients uptake 41
2.10 Ecosystem nutrients ... 43
 2.10.1 Sustainable fertility 44

CHAPTER 3: ANALYSIS OF THE WATER, SOIL AND PLANT IN THE FIELD .. 46

3.1 Analysis of soil for chemical and physical characteristics 46
 3.1.1 E.C and soil salinity .. 47
3.1.2 pH ... 47
3.1.3 CaCO₃ ... 48
3.1.4 Organic carbon (O.C %) .. 49
3.1.5 ESP and SAR .. 50
3.1.6 CEC and BS% .. 51
3.1.7 Organic matter (O.M %) .. 52
3.1.8 Soil texture ... 53
3.1.9 Clay minerals content ... 55

3.2 Soil test for assessing nutrients status 56
3.2.1 Determination of N content in the soil sample 56
3.2.2 Determination of P content in the soil sample 56
3.2.3 Determination of K content in the soil sample 57
3.2.4 Determination of Zn, Cu, Mn and Fe content in the soil sample ... 58

3.3 Physicochemical analysis of water sample 59
3.3.1 Total Hardness .. 59
3.3.2 Determination of carbonate content in the water (CO₃) 59
3.3.3 Determination of bicarbonate content in the water (CO₃H) .. 59
3.3.4 Determination of pH of water sample 60
3.3.5 Determination of E. Conductivity of water 60
3.3.6 Total dissolved solids (TDS) in water 60
3.3.7 Sodium Adsorption Ratio (SAR) of water 60
3.3.8 Potassium content in water 61
3.3.9 Sodium content in water 61
CHAPTER 5: RICE GRAIN YIELD AND ITS RELATIONSHIP WITH PLANT PHYSIOLOGICAL CHARACTERISTICS

5.1 Yield and the number of tillers
5.1.1 Relation with soil pH
5.2 Yield and plant height
5.2.1 Relation with soil pH
5.3 Yield and panicle length
5.3.1 Relation with soil pH
5.4 Yield and the number of seeds per panicle
5.4.1 Relation with soil pH
5.5 Relationship between soil pH, yield and physiological parameters
5.5.1 Comparison between the maximum yield per class
5.6 Yield and grain weight
5.7 Conclusions

CHAPTER 6: NUTRIENT CONTENTS IN LEAVES AND GRAINS OF RICE PLANT

6.1 Role of nitrogen in rice plant growth
6.1.1 Deficiency symptoms of nitrogen in rice plant
6.1.2 Toxicity symptoms of nitrogen in rice plant
6.1.3 Nitrogen fertilizer in Mazandaran
6.2 Role of phosphorous in rice plant growth
6.2.1 Deficiency symptoms of phosphorous in rice plant
6.2.2 Toxicity symptoms of phosphorous in rice plant
6.2.3 Phosphorous fertilizer in Mazandaran

6.3 Role of potassium in rice plant growth
 6.3.1 Deficiency symptoms of potassium in rice plant
 6.3.2 Toxicity symptoms of potassium in rice plant
 6.3.3 Potassium fertilizer in Mazandaran

6.4 Role of zinc in rice plant growth
 6.4.1 Deficiency symptoms of zinc in rice plant
 6.4.2 Toxicity symptoms of zinc in rice plant
 6.4.3 Zinc fertilizer in Mazandaran

6.5 Role of copper in rice plant growth
 6.5.1 Deficiency symptoms of copper in rice plant
 6.5.2 Toxicity symptoms of copper in rice plant
 6.5.3 Copper fertilizer in Mazandaran

6.6 Role of manganese in rice plant growth
 6.6.1 Deficiency symptoms of manganese in rice plant
 6.6.2 Toxicity symptoms of manganese in rice plant
 6.6.3 Manganese fertilizer in Mazandaran

6.7 Amylose and protein in grain

6.8 Macronutrients content in grain

6.9 Micronutrients content in leaves and grains
 6.9.1 Micronutrients content in grain
 6.9.2 Micronutrients content in leaves

6.10 Enriched grain with nutrients