TABLE OF CONTENTS

I. Introduction

II. Methods

III. Results

IV. Discussion

V. Conclusion

VI. References

LIST OF FIGURES

LIST OF TABLES

Table 1.1: Basic type of molecules and their polymer forms.
Table 1.2: Blood test reference range chart (American Metric System).
Table 1.3: List of human blood components and their concentrations.
Table 1.4: Worldwide groups working on Glucose measurement techniques.
Table 2.1: Energy conversion and respective scales.
Table 2.2: Average elemental composition of the skin, percentage by mass.
Table 2.3: Percentage constituents of adult human skin.
Table 2.4: Recommendation of the CIE for spectral band.
Table 2.5(a): Various Lamps and their parameters (Source: Newport).
Table 2.5(b): Physical quantity for quantifying the light.
Table 2.6: Division of Infrared radiations as per the detector type.
Table 2.7: Values of the energy gap between the valence and conduction bands in semiconductors at room temperature.
Table 2.8: Infrared materials for windows
Table 3.1: Various sources and their characteristics spectral irradiance. (Source: Newport)
Table 3.2: Table indicating the various components of non-invasive instrumentation.
Table 4.1: DSP IP soft cores categories
Table 4.2: Resource selection chart in SOPC builder of ALTERA QUARTUS.
LIST OF FIGURES

Figure 1.1: Structure of adenosine triphosphate.

Figure 2.1: Block of the FT-IR spectrophotometer.

Figure 2.3: A structure of human skin.

Figure 2.4: The absorption spectrum of tissue.

Figure 2.5: Dimension of the typical skin layers model.

Figure 2.6: Absorption spectrum of pure water. a) Plotted on a log10 scale from 200-10,000nm b) NIR region from 650-1,050 nm.

Figure 2.7: Specific absorption spectra of Hb and HbO2 in the NIR from 650-1,050nm (Cope, 1991)

Figure 2.8: Absorption spectrum of Glucose in IR region.

Figure 2.9: Energy band gap diagram for IR quantum detector.

Figure 2.10: Spectral response of the InGaAs detector.

Figure 2.11: Typical optical layout of external optics of three types of spectraradiometers a) VF spectraradiometer, b) Dispersive spectraradiometer c) FT spectraradiometer,

Figure 2.12: Transmission window for IR spectroscopy.

Figure 2.13: Attenuated total reflection (ATR) cell and Evanescent field.

Figure 2.14: Circular buffer implementation for real-time DSP.

Figure 2.15: Microprocessor architecture. a) The Von Neumann Architecture b) Harvard Architecture c) Super Harvard upon Harvard architecture.

Figure 2.16: The speed of DSP controller for various applications.

Figure 2.17: Multiprocessing configuration of DSP processor entity. a) Data flow type b) Cluster type.

Figure 2.18: Multiprocessing mesh configuration.
Figure 3.1: Block diagram of proposed Glucometer model.

Figure 3.2: Diagram specifying the detailed components.

Figure 3.3: Suggested flowchart of the control circuit of monochromator with range 2,000-2,500nm.

Figure 3.4: The simulated spectra of glucose from linear equation.

Figure 3.5: Flow chart of the simulated spectra generated by Lorentz oscillator model.

Figure 3.6: Spectra generated using Lorentz oscillator model (a non linear behavior).

Figure 3.7: Flow chart of the simulated spectra generated for unknown spectrum.

Figure 3.8: Spectrum generated using Lorentz technique.

Figure 3.9: Flow chart of the SIMPLE algorithm.

Figure 3.10: Prediction graph for unknown variants

Figure 3.11-3.16: ParLes Software Screen short of processing data.

Figure 3.17: Correlation between reference and parameter value for non-invasive study.

Figure 3.18: Error grid indicating group over distribution.

Figure 3.19: Error grid indicating acceptability for device (i.e. 97.3%).

Figure 4.1(a): Illustrates a few of DSP varied applications.

Figure 4.1(b): Shows a block diagram of a DSP system

Figure 4.2: DSP design for ECHO generator.

Figure 4.3: Xilinx Spartan III development board for the Graphical DSP design.

Figure 4.4: Block diagram of the Spartan III DSP boards.

Figure 4.5: (a) BDF blocks of the Data-Input and Data-Output in the SOPC and Fig. 4.5 (b) Photograph of working implemented system.

Figure 4.6: NIOS II soft core processor architecture for glucose signal processing.

Figure 4.7: ALTERA development Cyclone II board for the Graphical and Textual DSP implementation.
Figure 5.1: Spectral irradiance at 0.5 m from the NEWPORT 6315 1000W QTH Lamp.

Figure 5.2: Graph of spectral irradiance of 600 and 1000 watts (Source: Newport).

Figure 5.3: Spectral irradiance at 0.5 m from the 6333 100 W QTH Lamp at different voltages. The lamp is rated for 100 W at 12 V (Newport).

Figure 5.4: Average life of lamps and variation in operating voltage (Newport).

Figure 5.5: Running time and the luminous output as compared to conventional lamps (Source: Newport).

Figure 5.6: Linear power supply circuit for 600 Watts @ 12 Volts with reconfigurable winding.

Figure 5.7: Suggested Czerny-Turner configuration of a grating monochromator
KEYWORDS

ATP: Adenosine Triphosphate

BEMR: Bio-Electromagnetic Resonance.

Cataract: darkening and solidification of the lens in the eye.

Chemometrics: Matrix of Chemistry.

CIE: International Commission on Illumination.

DSP: Digital Signal Processing

FDA: Food and Drug Administration

FIR: Finite Impulse Response.

FPGA: Field Programmable Gate Array.

FT-IR: Fourier Transform Infrared Spectroscopy.

Glycosylated haemoglobin: It averages the blood glucose values over two to three months

Global radiation: For a typical cloudless atmosphere in summer and for zero zenith angle, the 1367 W m-2 of Solar constant reaching the outer atmosphere is reduced to ca. 1050 W m-2 direct beam radiation, and ca. 1120 W m-2 global radiation on a horizontal surface at ground level.

Hb: Haemoglobin

IDF: International Diabetics Federation

IDE: Investigational Device Exemption

Infrared radiation: Optical radiation for which the wavelengths are longer than those of visible radiation, 700 nm to 1000 μm.

Irradiance: Describes the flux, radiative power density, and incidence on a surface. Units, W m-2 or W cm-2. The surface must be specified for the irradiance to have meaning. Laboratory
surfaces are not usually as large as a square meter; this happens to be the appropriate SI unit of area).

IR: Infra Red

IRB: Institutional Review Board

In-silo: Inside body using silicon based implant.

In-vitro: Outside the body.

In-vivo: Inside the body.

IVD: In-vitro diagnostics.

IP: Intellectual Property

MAC: Multiply and Accumulate

MATLAB: Matrix Laboratory Software

MIR: Mid-infrared.

Non-Invasive (NI): Monitoring the parameter from outside.

NIR: Near Infra Red

OCT: Optical Coherence Tomography.

OGTT: Oral Glucose Tolerance Test.

PLS: Partial Least Square

PLSR: Partial Least Square Regression.

PMA: Physical Medicine of America.

SI: Systeme Internationale.

SNR: Signal to Noise Ratio.

Solar Constant: The irradiance of the sun on the outer atmosphere when the sun and earth are spaced at 1 AU (the mean earth/sun distance of 149,597,890 km), is called the solar constant. Currently accepted values are about 1360 W m⁻². (The NASA value given in ASTM E 490-
73a is 1353 (±21 W m-2.) The World Metrological Organization (WMO) promotes a more recent value of 1367 W m-2.).

SOC : System on Chip.

Spectral irradiance \(E(\lambda)\): The irradiance per unit wavelength interval at a specified wavelength. Spectral irradiance units, W m-2 nm-1 To convert into W m-2 \(\mu\)m-1, multiply by 1000 (1000 E). To convert into W cm-2 nm-1, multiply by 10^-4 (10^-4 E). To convert into W cm-2 \(\mu\)m-1, multiply by 0.1 (0.1 E)

SPIE : Society of Photo-optical Instrumentation Engineers.

SW-NIR: Short-Wavelength Near InfraRed.

PA: Photo-Acoustic

QTH : Quartz Halogen Tungsten

Ultraviolet radiation: Optical radiation for which the wavelengths are shorter than those for visible radiation, <400 nm. Note: For ultraviolet radiation, the range below 400 nm is ; commonly sub-divided into: UVA 320 - 400 nm, UVB 280 - 320 nm, UVC <280 nm

Visible radiation: Any optical radiation capable of causing a visual sensation directly, 400 - 700 nm.

YSI : Yellow Springs Instruments