LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>FIGURE TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Wind Electrical Generation System</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Slip power recovery schemes using auxiliary machines</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Static Scherbius slip power recovery scheme</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>Rotor side control scheme with back-to-back PWM inverters with capacitive dc link.</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Physical diagram of squirrel cage induction machine in wind turbine generator application</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Torque-Speed characteristics of an induction machine at fixed frequency for two different types of machines</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Equivalent circuit of a squirrel cage induction generator</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Torque speed characteristics of an induction machine in variable frequency at constant Volt/hertz operation</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Modified equivalent circuit of a squirrel-cage induction generator to illustrate variable-speed implementation with current source</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Physical diagram of Wound rotor induction machine</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Torque-Speed characteristic of a WRIM with the resitive load is adjusted by power converter to vary the apparent R_{ex}.</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>Equivalent circuit of a wound rotor induction machine</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Phasor diagram of two different rotor controls</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Physical diagram of load-controlled wound rotor induction machine</td>
<td>37</td>
</tr>
<tr>
<td>2.11</td>
<td>Physical diagram of a doubly fed WRIM</td>
<td>39</td>
</tr>
<tr>
<td>2.12</td>
<td>DC-DC converter to change one DC level to another</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Three-phase rectifier</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Three-phase voltage source inverter</td>
<td>44</td>
</tr>
<tr>
<td>2.15</td>
<td>Three-phase current source inverter</td>
<td>46</td>
</tr>
<tr>
<td>2.16</td>
<td>AC-AC conversion through a cycloconverter</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>C_p Vs λ characteristics (Power coefficient curve)</td>
<td>49</td>
</tr>
</tbody>
</table>
3.2 Constant speed with turbine with asynchronous squirrel cage induction generator 51
3.3 Power coefficient C_p as a function of tip speed ratio λ and pitch angle θ for a specific blade 52
3.4 Turbine power-generator variable shaft speed characteristics 55
3.5 WECS with variable speed synchronous generator 55
3.6 WECS with variable speed doubly fed wound rotor asynchronous Generator 58
3.7 WECS with variable speed squirrel cage induction 60
3.8 Typical power curve of a constant speed stall and a variable speed controlled wind turbine 62
4.1 Open Slots and Semi-enclosed Slots 71
4.2 Rectangular and Circular shaped rotor bar 76
4.3 Circle Diagram of Machine Designed as Generator 86
4.4 Circle Diagram of Machine Designed as Motor 87
4.5 General Scheme of Evolutionary Programming 92
4.6 Subroutine used in EP to evaluate objective function 95
4.7 Comparison of reactive power consumption 99
4.8 Comparison of percentage efficiency 99
4.9 Power rating Vs percentage no-load losses 100
4.10 Power rating Vs percentage full-load efficiency 100
5.1 Rotor Inner Diameter and Volume reduction Vs Power Rating 112
5.2 Comparison of Over Load Carrying Capacity 112
5.3 Comparison of Full-load Efficiencies 113
5.4 Comparison of No Load Losses 113
5.5 Comparison of percentage efficiencies 114
5.6 Comparison of Percentage Slip 114
6.1 Variable speed grid-connected WECS using doubly-fed wound rotor induction machine 116
6.2 Operating region of the doubly fed induction machine with rotor side control Figure 118
6.3 Approximate equivalent circuit with rotor current control 118
6.4 Phasor diagram and power flow diagram during sub synchronous motoring

6.5 Phasor diagram and power flow diagram during super synchronous motoring.

6.6 Phasor diagram and power flow diagram during sub synchronous generation

6.7 Phasor diagram and power flow diagram during super synchronous generation

6.8 Equivalent circuit in stator reference frame

6.9 Angular relations of current vectors for doubly fed induction Machine

6.10 Block diagram of the doubly-fed wound rotor induction machine model in the field coordinates

6.11 Schematic block diagram of the system arrangement for doubly-fed SRIM

6.12 Flux computation and rotor current transformation blocks

6.13 Block diagram of d-axis proportional rotor current controller

6.14 Block diagram of d-axis proportional-integral rotor current Controller

6.15 SIMULINK model of the doubly-fed SRIM

6.16 SIMULINK block diagram of a speed-controlled drive using doubly-fed SRIM

6.17a Simulated speed response of the speed-controlled grid-connected SRIM drive

6.17b Simulated torque response of the speed-controlled grid-connected SRIM drive

6.17c Simulated \(i_{rq}\) response of the speed-controlled grid-connected SRIM drive

6.17d Simulated \(i_{rd}\) response of the speed-controlled grid-connected SRIM drive

6.18a Simulated step response of \(i_{rq}\) for the grid-connected SRIM

6.18b Corresponding simulated response of \(i_{rd}\) for the grid-connected SRIM
6.18c Corresponding simulated response of i_s along with u_s for the grid-connected SRIM

6.18d Corresponding simulated response of i_r along with u_s for the grid-connected SRIM

6.19a Simulated step response of i_{rd} for the grid-connected SRIM

6.19b Corresponding simulated response of i_{rq} for the grid-connected SRIM

6.19c Corresponding simulated response of i_s along with u_s for the grid-connected SRIM

6.19d Corresponding simulated response of i_r along with u_s for the grid-connected SRIM

6.20 Schematic block diagram of the front end converter

6.21 Equivalent circuit and phasor diagrams for the front end converter

6.22 Schematic block diagram of the control structure of the front-end Converter

6.23 Stationary and synchronous reference frame

6.24 DC Bus Model

6.25 Block diagram of q-axis proportional front end current controller

6.26 Block diagram of q-axis proportional-integral front end current Controller

6.27a Structure of PI controller

6.27b Magnitude and Phase plot of the voltage loop

6.28 SIMULINK model of the three phase front end converter power circuit

6.23 SIMULINK system model of the three phase front end converter

6.30a Response of i_{feq} and i_{fed}

6.30b u_{ac} and response of i_{fe}

6.31a Response of i_{feq} and i_{fed}

6.31b u_{ac} and response of i_{fe}

6.32a Response of i_{feq} and i_{fed}

6.32b Response of u_s and response of i_{fe}
6.33a Response of u_{dc} 171
6.33b Response of i_{feq} 171
6.34a Response of u_{dc} 172
6.34b Response of i_{feq} 172
A1 Three phase and equivalent two phase coil-systems 176