TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>xii</td>
</tr>
<tr>
<td>List of figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of symbols</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Wind Electrical Generation System</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Grid Connected Induction Generator Operation</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Isolated Induction Generator Operation</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Background and Literature Survey</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1 Squirrel Cage Machine Design</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2 Slipring induction machine control</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Scope of the thesis</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER 2 WIND ENERGY CONVERSION SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>2.1 Wind power</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Wind turbines</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Isolated and Grid connected WECS</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Choice of wind electric generators</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1 Constant Shaft Speed Operation (CSO)</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1.1 CSO autonomous applications</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1.2 CSO Grid connected application</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2 Variable Shaft Speed Operation (VSO)</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2.1 VSO autonomous applications</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2.2 VSO grid connected applications</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Induction Generator</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1 Squirrel-cage Induction Machine (SCIM)</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1.1 Constant-Frequency operation</td>
<td>28</td>
</tr>
</tbody>
</table>
2.5.1.2 Variable frequency operation
 (voltage source mode) 29
2.5.1.3 Variable frequency operation
 (Field oriented control) 31
2.5.2.1 Wound rotor induction machine
 (WRIM) with resistive load control 32
2.5.2.2 Doubly fed WRIM with power
 electronics driven rotor 36
2.6 Voltage-Frequency Converters 39
 2.6.1 DC-DC Converter 39
 2.6.2 AC-DC Power Converter 41
 2.6.3 DC-AC Power Converter 42
 2.6.4 Cycloconverter 45

CHAPTER 3 CONSTANT SPEED AND VARIABLE SPEED WIND POWER GENERATION
3.1 Introduction 48
3.2 Wind turbine characteristics 48
3.3 Constant speed wind energy conversion system 50
 3.3.1 Constant speed characteristics 51
3.4 Variable speed wind energy conversion system 53
 3.4.1 Variable speed generation technologies 55
 3.4.1.1 VSSG 55
 3.4.1.2 VSWRIG 58
 3.3.1.3 VSSCIG 60
3.5 Comparison of constant speed and variable speed wind energy conversion systems 61
 3.5.1 Characteristics 62
 3.5.2 Static operation 63
 3.5.3 Advantages of the variable speed WECS with respect to the constant speed WECS 63
 3.5.4 Disadvantages of variable speed WECS with respect to the constant speed WECS 64
CHAPTER 4 DESIGN OF GRID CONNECTED INDUCTION GENERATORS
FOR CONSTANT SPEED WIND POWER GENERATION

4.1 Introduction 65
4.2 Design Strategies 66
4.3 Basic design Equations 68
 4.3.1 Sizing equations 68
 4.3.2 Stator Design 69
 4.3.3 Rotor Design 74
 4.3.4 Operating Characteristics 78
 4.3.5 Performance Characteristics 84
 4.3.6 Temperature Rise 88
4.4 The Optimization Problem 89
 4.4.1 Constraints for design of a motor 90
 4.4.2 Constraints for design of a generator 90
4.5 Evolutionary Programming (EP) and its Implementation 90
 4.5.1 General Scheme of Evolutionary Programming 91
 4.5.2 Features of Evolutionary Programming 92
 4.5.3 Implementation of Evolutionary Programming 93
 4.5.3.1 Initialisation 93
 4.5.3.2 Mutation 94
 4.5.3.3 Competition and Selection 94
 4.5.3.4 Stopping rule 96
4.6 Results and Discussion 96
4.7 Conclusion 101

CHAPTER 5 DESIGN OF GRID CONNECTED INDUCTION GENERATORS
FOR VARIABLE SPEED WIND POWER GENERATION

5.1 Introduction 102
5.2 Design Strategies 103
5.3 Sizing Equations 105
5.4 The optimization problem 107
 5.4.1 Induction machine designed a motor 108
5.4.2 Induction machine designed as variable speed induction generator 108

5.5 Results and Discussion 109

5.6 Conclusion 115

CHAPTER 6 VECTOR CONTROL ON DOUBLE OUTPUT INDUCTION GENERATOR FOR VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

6.1 Introduction 116

6.2 Rotor side control: Mode of operation 117

6.3 Machine Model in Field Coordinates 125

6.4 Field Oriented Control

6.4.1 Rotor Equation in Field Coordinates 132

6.4.2 Design of Rotor Current Controller in Field Coordinates 136

6.5 Simulation Results-Rotor Side Control 142

6.6 Front end Converter 151

6.7 System Description 152

6.8 Principle of Operation and Control 153

6.9 Modeling of the Power Circuit 157

6.10 Front end converter controller design 160

6.10.1 Design of the current controller 160

6.10.2 Design of the voltage controller 164

6.11 Simulation Results – Front end Converter 165

6.12 Conclusion 173

CHAPTER 7 CONCLUSION

7.1 Summary of the work 174

7.2 Squirrel cage Induction Generator Design 174

7.2.1 Constant speed wind power generation 174

7.2.2 Variable speed wind power generation 174

7.3 Vector control on wound rotor induction machine for variable speed wind power generation 175

7.4 Recommendation for further research work 175
APPENDIX A	Machine model in stationary coordinates	176
APPENDIX B1	Machine and controller parameters used for stimulation of rotor side control	183
APPENDIX B2	Power Circuit and Controller Parameters used for Simulation of Front end Converter Control	186
REFERENCES		188
LIST OF PUBLICATIONS		196
VITAE		198