Abstract

Doctor of Philosophy

INVESTIGATIONS IN NUCLEAR DATA PHYSICS AND COVARIANCES IN NUCLEAR DATA EVALUATIONS

B. S. Shivashankar

The relative measurement to determine $^{58}\text{Ni}(n, p)^{58}\text{Co}$ reaction cross-sections have been performed at BARC-TIFR2 Pelletron accelerator facility, Mumbai, India, using activation technique and offline γ-spectroscopy using High Purity Germanium detector.

There were two targets in each of the three irradiations, corresponding to the proton beam of energy $E_p = 7.8, 12, \text{ and } 18 \text{ MeV}$, a stack of Tantalum-Lithium-Tantalum foils and a stack of Nickel, Thorium and Uranium foils. The stack of Tantalum-Lithium-Tantalum foils is the proton beam facing target, which produces quasi mono-energetic neutron beam of effective neutron energies $E_n = 5.88 \pm 0.12, 10.11 \pm 0.06 \text{ and } 15.86 \pm 0.12 \text{ MeV}$, corresponding to $E_p = 7.8, 12, \text{ and } 18 \text{ MeV}$, respectively, using the $^7\text{Li}(p, n)$ reaction. The neutron beam generated, irradiate the stack of Nickel, Thorium and Uranium foils. Our aim is to determine neutron induced reaction cross-section for the $^{58}\text{Ni}(n, p)^{58}\text{Co}$ reaction, normalized to the standard cross-section: the cross-section for the formation of ^{97}Zr in $^{232}\text{Th}(n, f)$ reaction and the cross-section for the formation of ^{97}Zr in $^{238}\text{U}(n, f)$ reaction.

We discuss, generation of covariance information using the partial uncertainties and the micro-correlations. We present necessary data and step by step simplification, in the following context: Efficiency calibration of HPGe detector with respect to γ-lines from standard ^{152}Eu source, efficiency of the HPGe detector with respect to characteristic γ-lines from the reaction products $^{58}\text{Co}^*$ and $^{97}\text{Zr}^*$, reaction rates in the $^{58}\text{Ni}(n, p)^{58}\text{Co}$, $^{232}\text{Th}(n, f)$ and $^{238}\text{U}(n, f)$ reactions, the ratio of reaction rates at three effective neutron energies $E_n = 5.88 \pm 0.12, 10.11 \pm 0.06 \text{ and } 15.86 \pm 0.12 \text{ MeV}$ and normalization.

We further discuss weighted averaging of equivalent data, where, by equivalent data, we mean neutron induced reaction cross-section of $^{58}\text{Ni}(n, p)^{58}\text{Co}$ reaction, normalized to the cross-section for the formation of fission product ^{97}Zr in the $^{232}\text{Th}(n, f)$ and $^{238}\text{U}(n, f)$ reaction, at each of the three effective neutron energies. Additionally, we illustrate χ^2-scaling, when χ^2 value obtained in the weighted averaging of equivalent data is higher than the expected.

2Bhabha Atomic Research Centre-Tata Institute for Fundamental Research