Fig. 3.1: Sampling location in the study area upto 30 km radius from the proposed site
Fig. 3.2: Kharif cropping pattern in the study area

Fig. 3.3: Rabi cropping pattern in the study area
Fig. 3.4a: Quarterly average wind rose for proposed Nuclear Power Project Site (2005–2009)

Fig. 3.4b: Annual average wind rose for proposed Nuclear Power Project Site (2005 – 2009)
Fig. 3.5: Collection of vegetable samples from the field

Fig. 3.6: Collection of rice sample from the field
Fig. 3.7: Collection of pearl millet samples from the field

Fig. 3.8: Collection of groundwater samples from the field
Fig. 3.9: Collection of grass sample from the field

Fig. 3.10: Collection of undisturbed soil samples from the field
Fig. 3.11: ZnS(Ag) scintillation counter used for gross alpha counting

Fig. 3.12: GM counter used for gross beta counting
Fig. 3.13a: Nitrogen Laser Fluorimeter used for Uranium analysis

Fig. 3.13b: LED based uranium analyzer used for Uranium analysis
Fig. 3.14: Liquid scintillation analyzer used for analysis of 3H in water

Fig. 3.15: Well type NaI(Tl) scintillation detector used for 137Cs activity measurement
Fig. 3.16: A specimen spectrum for 137Cs measurement
Fig. 3.17: Gas flow low beta counter used for 90Sr activity measurement

Fig. 3.18: HPGe spectrometry system used for gamma activity measurement
Fig. 3.19: A specimen spectrum of soil sample generated by HPGe spectrometer
Fig. 3.20: Sunpet 250 ml plastic box used for packing of samples

Fig. 3.21: Air sampler for sampling fine particulate matter
Fig. 4.1: Stack diagram for average gross alpha and gross beta activity distribution in water samples at different locations
Fig. 4.2: Correlation between gross alpha and gross beta activities in water samples

Fig. 4.3: Box plot for gross alpha and gross beta activities in water samples
Fig. 4.4: Frequency distribution of gross alpha and gross beta activity in water samples
Fig. 4.5: Bar diagram of average uranium concentration distribution in water samples at different locations.
Fig. 4.6: Box plot for uranium concentration in water samples

Fig. 4.7: Frequency distribution of uranium concentration in water samples
Fig. 4.8: Stack diagram for average 137Cs and 90Sr activity distribution in water samples at different locations.

Fig 4.9: Box plot for 137Cs and 90Sr activity in water samples.
Fig 4.10: Frequency distribution of 137Cs and 90Sr activity in water samples
Fig. 5.1 Frequency distribution curve of 137Cs activity in soil samples

Fig. 5.2 Box plot of 137Cs activity in soil samples
Fig. 5.3 Box plot of 238U (226Ra), 232Th and 40K in soil samples
Fig: 5.4 Frequency distribution of 238U, 232Th and 40K in soil samples
Fig: 5.5 Scatter diagram and correlation curve between 232Th and 40K in soil samples

Fig: 5.6 Scatter diagram and correlation curve between 238U and 40K in soil samples

Fig: 5.7 Scatter diagram and correlation curve between 238U and 232Th in soil samples
Fig. 6.1: Box plot for 137Cs activity in food grain (wheat, pearl millet, rice) samples

Fig. 6.2: Box plot for 137Cs activity in vegetables (saag i.e. green mustard leaves) samples
Fig. 6.3: Box plot for 137Cs activity in mustard grain and cluster bean samples

Fig. 6.4: Box plot for 137Cs activity in fodder (Barseem, jai and doob grass) samples
Fig. 6.5: Box plot for 40K activity in food grain (wheat, pearl millet, rice) samples

Fig. 6.6: Box plot for 40K activity in vegetables (green mustard leaves, carrot, radish and ash gourd) samples
Fig. 6.7: Box plot for 40K activity in mustard grain and cluster bean samples

Fig. 6.8: Box plot for 40K activity in fodder (Barseem, jai and doob grass) samples
Fig. 6.9: Box plot for 232Th activity in food grain (wheat, pearl millet, rice) samples

Fig. 6.10: Box plot for 232Th activity in vegetables (green mustard leaves) samples
Fig. 6.11: Box plot for 232Th activity in mustard grain and cluster bean samples

Fig. 6.12: Box plot for 232Th activity in fodder (Barseem, jai and doob grass) samples
Fig. 6.13: Box plot for 238U activity in food grain (wheat, pearl millet, rice) samples

Fig. 6.14: Box plot for 238U activity in vegetables (green mustard leaves, carrot, radish and ash gourd) samples
Fig. 6.15: Box plot for ^{238}U activity in mustard grain and cluster bean samples

Fig. 6.16: Box plot for ^{40}K activity in fodder (Barseem, jai and doob grass) samples
Fig. 7.1: Thermo Luminescent Dosimeter and Survey Meter used for the experiment
Fig. 7.2: TLD installation location in the study area upto 30 km radius from the proposed site
Fig 7.3: Quarterly average indoor and outdoor gamma radiation dose estimated using survey meter.

Fig. 7.4: Quarterly average values of indoor and outdoor gamma radiation dose estimated using TLD.
Fig. 7.5: Comparison of the indoor and outdoor gamma radiation dose estimated using survey meter and TLDs

Fig. 7.6: Box plot for quarterly indoor gamma radiation dose estimated using survey meter and TLDs
Fig. 7.7: Box plot for quarterly outdoor gamma radiation dose estimated using survey meter and TLDs
Fig. 7.8: Frequency diagram for gross alpha and gross beta activities in air particulate matter (PM2.5)