CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>viii-x</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>xi-xv</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xvi-xviii</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>xix-xxi</td>
</tr>
</tbody>
</table>

Chapter-1 General Introduction

Section 1.1 Introduction 1-3

1.2 Impurity profiling and forced degradation studies 4-12
 of pharmaceutical compounds

1.3 Separation and quantification of impurities:
 Concepts of UHPLC 12-18

1.4 Spectroscopic tools for the structure elucidation of
 unknown impurities/degradants: HRMS and NMR 18-29

1.5 Chiral analysis of pharmaceutical compounds,
 Chiral stationary phases 29-38

1.6 Validation of stability indicating HPLC Methods 38-43
1.7 Objectives of the present research study 44-46

Chapter 2 Forced degradation studies of Pentoxifylline-

Structure elucidation of degradants, Development of
stability indicating UHPLC method and Validation

Section 2.1 Introduction and Literature Survey 55-57

2.2 Experimental 58-60

2.3 Forced degradation studies of Pentoxifylline 60-66

2.4 Isolation and purification of Pentoxifylline 67-69

degradation products

2.5 Structure elucidation of Pentoxifylline degradants 69-89

2.6 Development of stability indicating 90-92
HPLC and UHPLC methods

2.7 Validation of stability indicating UHPLC assay 92-98
method for Pentoxifylline

2.8 Conclusions 99

Chapter 3 Forced degradation studies of Tripolidine-

Structure elucidation of degradants, Development of
stability indicating UHPLC method and Validation

Section 3.1 Introduction and Literature Survey 105-106

3.2 Experimental 106-107

3.3 Forced degradation studies of Triprolidine 107-112

3.4 Isolation and purification of Triprolidine 113-114 degradation products

3.5 Structure elucidation of Triprolidine degradants 115-131 products

3.6 Development of HPLC and UHPLC methods 132-134

3.7 Validation of UHPLC assay and related substances 134-143 method for Triprolidine

3.8 Conclusions 143

Chapter-4 Development and evaluation of chiral separation screening methods using 17 pharmaceutical racemic compounds and application of LC-MS detection

Section 4.1 Introduction and Literature Survey 146-150

4.2 Experimental 150-155
4.3 Development of generic gradients and their evaluation against isocratic methods

4.4 Development and application of mass spectrometric detection for chiral screening

4.5 Conclusions

Chapter 5 Development of chiral resolution optimization methods

Section 5.1 Introduction and Literature Survey

5.2 Experimental

5.3 Application of column temperature as an optimization strategy in POM

5.4 Transformation of POSC chiral selectivities in to RP optimized methods

5.5 Optimization strategies in NP mobile phase systems

5.6 Conclusions

Chapter 6 Development of chiral resolution LC methods for Eslicarbazepine acetate enantiomers and validation

Section 6.1 Introduction and Literature Survey
6.2 Experimental 226-228

6.3 Chiral separation method development 228-232
for Eslicarbazepine acetate, its (R)-enantiomer
and licarbazepine

6.4 Validation of NP and POSC Methods for the 232-240
estimation of ESL (R)-enantiomer

6.5 Conclusions 241

Chapter-7 Summary 244-246

Appendix Research Publications and Other Publications