LIST OF TABLES

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>Source information of selected drugs</td>
<td>5</td>
</tr>
<tr>
<td>1.02</td>
<td>Functional groups imparting acidic or basic nature</td>
<td>8</td>
</tr>
<tr>
<td>1.03</td>
<td>List of proposed and reported visible spectrophotometric methods</td>
<td>13</td>
</tr>
<tr>
<td>1.04</td>
<td>Column Selection flow chart</td>
<td>40</td>
</tr>
<tr>
<td>1.05</td>
<td>Physical properties of common HPLC solvents</td>
<td>42</td>
</tr>
<tr>
<td>1.06</td>
<td>List of proposed and reported HPLC methods</td>
<td>49</td>
</tr>
<tr>
<td>2.01</td>
<td>Structural features and active functional groups of the selected antipsychotic drug</td>
<td>66</td>
</tr>
<tr>
<td>2.02</td>
<td>Therapeutic importance and characteristic features of selected antipsychotic drug</td>
<td>67</td>
</tr>
<tr>
<td>2.03</td>
<td>Particulars of commercially available formulations of selected antipsychotic drug</td>
<td>68</td>
</tr>
<tr>
<td>2.04</td>
<td>Procedure for the assay of OZP in bulk/formulations</td>
<td>69</td>
</tr>
<tr>
<td>2.05</td>
<td>Optimization of parameters for Method M₂</td>
<td>80</td>
</tr>
<tr>
<td>2.06</td>
<td>Optimization of parameters for Method M₃</td>
<td>81</td>
</tr>
<tr>
<td>2.07</td>
<td>Optimization of parameters for Method M₅</td>
<td>82</td>
</tr>
<tr>
<td>2.08</td>
<td>Optimization of parameters for Method M₇</td>
<td>83</td>
</tr>
<tr>
<td>2.09</td>
<td>Optimization of parameters for Method M₈</td>
<td>84</td>
</tr>
<tr>
<td>2.10</td>
<td>Optimization of parameters for Method M₁₀</td>
<td>85</td>
</tr>
<tr>
<td>2.11</td>
<td>Optimization of parameters for Method M₂₁</td>
<td>86</td>
</tr>
<tr>
<td>2.12</td>
<td>Optical and Regression characteristics, Precision and Accuracy of the proposed methods for OZP</td>
<td>87</td>
</tr>
<tr>
<td>2.13</td>
<td>Assay and Recovery of OZP in dosage forms</td>
<td>96</td>
</tr>
<tr>
<td>2.14</td>
<td>Chromatographic conditions for OZP (Method M₂₃)</td>
<td>108</td>
</tr>
<tr>
<td>2.15</td>
<td>Performance calculations, Detection characteristics, Precision and Accuracy of the proposed method for OZP</td>
<td>109</td>
</tr>
<tr>
<td>2.16</td>
<td>Assay and Recovery of OZP in dosage forms</td>
<td>110</td>
</tr>
</tbody>
</table>
3.01 Structural features and active functional groups of the selected antihypertensive drug 117
3.02 Therapeutic importance and characteristic features of selected antihypertensive drug 118
3.03 Particulars of commercially available formulations of selected antihypertensive drug 119
3.04 Procedure for the assay of PDE in bulk/formulations 120
3.05 Optimization of parameters for Method M_{11} 131
3.06 Optimization of parameters for Method M_{12} 132
3.07 Optimization of parameters for Method M_{13} 133
3.08 Optimization of parameters for Method M_{15} 134
3.09 Optimization of parameters for Method M_{20} 135
3.10 Optimization of parameters for Method M_{21} 136
3.11 Optical and Regression characteristics, Precision and Accuracy of the proposed methods for PDE 137
3.12 Assay and Recovery of PDE in dosage forms 145
3.13 Chromatographic conditions for PDE (Method M_{24}) 157
3.14 Performance calculations, Detection characteristics, Precision and Accuracy of the proposed method for PDE 158
3.15 Assay and Recovery of PDE in dosage forms 159
4.01 Structural features and active functional groups of the selected antidiabetic drug 165
4.02 Therapeutic importance and characteristic features of selected antidiabetic drug 166
4.03 Particulars of commercially available formulations of selected antidiabetic drug 167
4.04 Procedure for the assay of NTG in bulk/formulations 168
4.05 Optimization of parameters for Method M_{1} 178
4.06 Optimization of parameters for Method M_{13} 179
4.07 Optimization of parameters for Method M_{16} 180
4.08 Optimization of parameters for Method M_{17} 181
4.09 Optimization of parameters for Method M_{18}
4.10 Optimization of parameters for Method M_{22}
4.11 Optical and Regression characteristics, Precision and Accuracy of the proposed methods for NTG
4.12 Assay and Recovery of NTG in dosage forms
4.13 Chromatographic conditions for NTG (Method M_{25})
4.14 Performance calculations, Detection characteristics, Precision and Accuracy of the proposed method for NTG
4.15 Assay and Recovery of NTG in dosage forms
5.01 Structural features and active functional groups of the selected oral hypoglycemic drug
5.02 Therapeutic importance and characteristic features of selected oral hypoglycemic drug
5.03 Particulars of commercially available formulations of selected oral hypoglycemic drug
5.04 Procedure for the assay of RPG in bulk/formulations
5.05 Optimization of parameters for Method M_2
5.06 Optimization of parameters for Method M_4
5.07 Optimization of parameters for Method M_6
5.08 Optimization of parameters for Method M_{15}
5.09 Optimization of parameters for Method M_{17}
5.10 Optimization of parameters for Method M_{21}
5.11 Optical and Regression characteristics, Precision and Accuracy of the Proposed methods for RPG
5.12 Assay and Recovery of RPG in dosage forms
5.13 Chromatographic conditions for RPG (Method M_{25})
5.14 Performance calculations, Detection characteristics, Precision and Accuracy of the proposed method for RPG
5.15 Assay and Recovery of RPG in dosage forms
6.01 Structural features and active functional groups of the selected antihyperglycemic drug
6.02 Therapeutic importance and characteristic features of selected antihyperglycemic drug
6.03 Particulars of commercially available formulations of selected antihyperglycemic drug
6.04 Procedure for the assay of STP in bulk/formulations
6.05 Optimization of parameters for Method \(M_3 \)
6.06 Optimization of parameters for Method \(M_5 \)
6.07 Optimization of parameters for Method \(M_9 \)
6.08 Optimization of parameters for Method \(M_{14} \)
6.09 Optimization of parameters for Method \(M_{19} \)
6.10 Optical and Regression characteristics, Precision and Accuracy of the proposed methods for STP
6.11 Assay and Recovery of STP in dosage forms
7.01 Structural features and active functional groups of Amlodipine
7.02 Therapeutic importance and characteristic features of Amlodipine
7.03 Preparation of spiked plasma calibration curve standards
7.04 Preparation of spiked plasma quality control samples
7.05 Working mass spectrophotometric parameters
7.06 Working chromatographic conditions
7.07 Selectivity of the method
7.08 Back calculated concentrations for calibration curve standards of ALP
7.09 Within and between batch precision and accuracy for quality control samples of ALP
7.10 Recovery of ALP and CTP
7.11 Short term and long term stability of ALP and CTP in stock solution
7.12 Stability of ALP in biological matrix