CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Definition of pesticide</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification of pesticide</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Pesticide use</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Background and history of pesticides use in agriculture and its impact on health</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>World pesticide consumption</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Pesticides in India</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>Importance of pesticide application and its associated risks</td>
<td>5</td>
</tr>
<tr>
<td>1.8</td>
<td>Pesticide in food products</td>
<td>6</td>
</tr>
<tr>
<td>1.9</td>
<td>Pesticide regulations in India</td>
<td>7</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Pesticide residue regulation</td>
<td>8</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Maximum residue limits (MRLs)</td>
<td>9</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Analytical methods used for pesticides residues analysis</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Objective of study</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Pesticides residue in fruits and vegetable samples collected from market</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Pesticide residues in fruits and vegetable samples from experimental field</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Extraction and cleanup of pesticide residues in fruits and vegetables</td>
<td>19</td>
</tr>
</tbody>
</table>
2.4 Analytical techniques used for pesticide residue analysis

2.4.1 Spectrophotometric determination of pesticide residues

2.4.1.1 Application of Fourier transform infrared (FTIR) determination of pesticide residues

2.4.2 Application of thin layer chromatography

2.4.3 Application of high performance liquid chromatography

2.4.4 Application of gas chromatography electron capture detector for determination of pesticide residues

2.4.5 Application of gas Chromatography mass spectrometer (GC-MS) for determination of pesticide residues

2.5 Dissipation and persistence period of pesticides residues in fruits and vegetables

2.6 Effect of household processing on pesticides residues

3. MATERIALS AND METHODS

3.1 Materials

3.1.1 Apparatus

3.1.2 Chemicals

3.1.3 Glassware

3.1.4 Pesticides selected for the study of market samples

3.1.5 Pesticide selected for application on crops in experimental field

3.1.6 Vegetable and fruit samples selected for analysis of pesticide residues

3.2 Methods

3.2.1 Collection of sample from the local market

3.2.2 Vegetable selected for experimental field study

3.2.2.1 Field experiment design

3.2.2.2 Application of pesticides on brinjal and okra crop
3.2.3 Collection of samples from the experimental field
3.2.3.1 Collection of brinjal samples
3.2.3.2 Collection of okra samples
3.2.4 Preparation of standard stock solution of pesticides
3.2.4.1 Preparation of working solution
3.2.4.2 Preparation of intermediate solution
3.2.5 Instrumentation
3.2.5.1 GC-ECD system
3.2.5.2 GC-MS system
3.2.6 Optimization of instrumental parameters for GC-ECD and GC-MS
3.2.7 Method Validation
3.2.7.1 Limit of detection (LOD) and limit of quantification (LOQ)
3.2.7.2 Calibration Curve (Linearity)
3.2.7.3 Linearity
3.2.7.4 Recovery
3.2.8 Comparative instrumental method for determination for
 Determination of pesticide residues in vegetables
3.2.9 Analytical techniques used for pesticides residues analysis
3.2.9.1 Extraction of pesticide residues in ethyl acetate and
 cleaned up on Florisil and charcoal column
3.2.9.2 Extraction of pesticide residues in fruits and vegetables
 samples with 1% acetic acid solution of acetonitrile
 cleaned up with PSA and magnesium sulphate
3.2.10 Analysis of fruits and vegetables collected from local market
3.2.10.1 Analysis of pesticide residues in vegetables samples collected
 from local market
3.2.10.2 Analysis of brinjal and cauliflower samples collected
 during 2010
3.2.10.3 Analysis of pesticide residues in brinjal, capsicum, cauliflower and okra samples collected during Jan 2010 to Dec 2010 53

3.2.10.4 Analysis of pesticide residues capsicum and cauliflower collected during 2012 53

3.2.10.5 Analysis of pesticide residues in apple and grape samples collected from local market August 2012 to March 2013 54

3.2.10.6 Analysis of pesticide residues in apple, grape and guava samples collected during July 2012 to April 2013 54

3.2.11 Comparative solvent extraction method for determination of pesticides residues in vegetables 54

3.2.12 Effect of household processing on reduction of pesticide residues in vegetables 55

3.2.13 Effect of household processing on reduction of pesticide residues in vegetables 56

4 RESULTS AND DISCUSSION 57

4.1 Method Validation 57
4.1.1 Calibration Curve (Linearity) 57
4.1.2 Recovery 60
4.1.3 Recovery study of pesticide residues in vegetables by GC-ECD 60
4.1.4 Recovery study of pesticide residues in vegetables by GC-MS 62
4.1.5 Quantitation ion, confirmation ion, calibration range, correlation coefficient and coefficient of variation 64
4.1.6 Molecular formula, retention time, LODs and LOQs of Chlorpyrifos, cypermethrin, endosulfan and monocrotophos 64

4.2 Analysis of fruits and vegetables collected from local market 70
4.2.1 Analysis of pesticide residues in vegetable samples collected
from local market

4.2.1.1 Analysis of brinjal and cauliflower samples collected during 2010

4.2.1.2 Analysis of pesticide residues in brinjal, capsicum, cauliflower and okra samples collected during Jan 2010 to Dec 2010

4.2.2 Analysis of pesticide residues capsicum and cauliflower collected during 2012

4.2.3 Analysis of pesticide residues in fruits samples collected from
4.2.3.1 Analysis of pesticide residues in apple and grape samples collected during August 2012 to March 2013

4.2.3.2 Analysis of pesticide residues in apple, grape and guava samples collected during July 2012 to April 2013

4.3 Comparative solvent extraction method for determination of pesticide residues in vegetables
4.3.1 Comparative solvent extraction of vegetable samples with ethylacetate and cleanup with Florisil and charcoal and acetonitrile containing 1% of acetic acid cleanup with PSA and magnesium sulphate

4.4 Dissipation and persistence period of pesticides residues in brinj and okra

4.5 Effect of normal/hot water washing on pesticide residues

4.6 Effect of household washing/processing on pesticides reissues in In vegetables

Conclusions

References

List of publications