List of Figures

Chapter I
Fig1.1 The fingering instability.
Fig1.2 The Oscillatory instability.

Chapter II
Fig2.1 Physical sketch of the problem representing an infinite horizontal fluid layer with linear distributions of temperature and solute.
Fig2.2 The variations of Rayleigh number with square of the wave number for three Solutal Rayleigh numbers in stationary convection.
Fig2.3 The variations of Rayleigh number with square of wave number for varying Soret parameters without Dufour parameter in stationary convection.
Fig2.4 The variations of Rayleigh number with square of wave number for varying Dufour parameters without Soret parameter in stationary convection.
Fig2.5 The variations of Rayleigh number with square of wave number for varying Soret parameters with a fixed Dufour parameter in stationary convection.
Fig2.6 The variations of Rayleigh number with square of wave number for varying Dufour parameters with a fixed Soret parameter in stationary convection.
Fig2.7 The variations of Rayleigh number with square of wave number in oscillatory convection.
Fig2.8 The variations of square of frequency with square of wave number for fixed Dufour Number and with varying Soret number in oscillatory convection.
Fig2.9 The variations of Rayleigh number with square of wave number for varying Dufour parameters with a fixed Soret parameter in oscillatory convection.
Fig2.10 The variations of square of frequency with square of wave number for fixed Soret Number and with varying Dufour number in oscillatory convection.
Fig2.11 The variations of the Rayleigh number with square of wave number for fixed Soret and Dufour Number and with varying Prandtl number in oscillatory convection.

Chapter III
Fig3.1 Physical sketch of the problem representing an infinite horizontal saturated porous fluid layer with linear distribution of temperature and solute.
Fig3.2 The variations of Darcy-Rayleigh number with the square of the wave number for different values of the Soret number in stationary convection.
Fig3.3  The effects of Soret number on the boundary of monotonic or stationary instability in the $Ra_D \sim Ra_{D,S}$ plane.

Fig3.4  The variations of Darcy-Rayleigh number with the square of the wave number for different values of the Dufour number in stationary convection.

Fig3.5  The effects of Dufour number on the boundary of monotonic or stationary instability in the $Ra_D \sim Ra_{D,S}$ plane.

Fig3.6  The variations of Darcy-Rayleigh number with the square of the wave number for different values of the porosity parameter $\Phi$ in oscillatory convection.

Fig3.7  The variations of the square of frequency of the periodic convection with the square of the wave no. for different values of the Soret number.

Fig3.8  The variations of the square of frequency of the periodic convection with the square of the wave number for different values of the Dufour number.

Fig3.9  The variations of Rayleigh number with square of wave number in steady and oscillatory convection with $Le = 100, Ra_{D,S} = 1.0, S_r = 0.0, D_f = 0.0001$.

Fig3.10  The variations of Rayleigh number with square of wave number in steady and oscillatory convection with $Le = 100, Ra_{D,S} = 1.0, S_r = 0.08, D_f = 0.0001$.

Fig3.11  The variations of Rayleigh number with square of wave number in steady and oscillatory convection with $Le = 100, Ra_{D,S} = 1.0, S_r = 0.08, D_f = 0.0005$.

Fig3.12  The variations of Rayleigh number with square of wave number in steady and oscillatory convection with $Le = 100, Ra_{D,S} = 1.0, S_r = 0.6, D_f = 0.0005$.

Chapter IV

Fig4.1  Physical sketch of the problem representing an infinite horizontal viscoelastic fluid layer with linear temperature distribution.

Fig4.2  Rayleigh number against square of wave number for given Prandtl number and retardation time with different relaxation times.

Fig4.3  Rayleigh number against square of wave number for given Prandtl number and retardation time with different relaxation times.

Fig4.4  Rayleigh number against square of wave number for given Prandtl number and relaxation time with different retardation times.

Fig4.5  Rayleigh number against square of wave number for given Prandtl number and relaxation time with different retardation times.

Fig4.6  Rayleigh number against wave number for given retardation and relaxation times with different Prandtl numbers (low) in oscillatory convection.
Fig 4.7 Rayleigh number against wave number for given retardation and relaxation times with different Prandtl numbers (high) in oscillatory convection.

Fig 4.8 Frequency of the overstability as a function of wave number for different values of relaxation time and given Prandtl number and retardation times.

Fig 4.9 Frequency of the overstability as a function of wave number for different values of retardation time and given Prandtl number and relaxation times.

Fig 4.10 Critical Rayleigh number against relaxation time for stationary and oscillatory convection with Prandtl number $Pr = 1$.

Fig 4.11 Critical Rayleigh number against retardation time for stationary and oscillatory convection with Prandtl number $Pr = 1$.

Chapter V

Fig 5.1 The variations of Darcy-Rayleigh number with square of wave number for steady and oscillatory convection $\lambda_1 = 0.75, \lambda_2 = 0.2, S_r = 0.1, D_f = 0.005$.

Fig 5.2 The variations of Darcy-Rayleigh number with square of wave number for steady and oscillatory convection $\lambda_1 = 0.75, \lambda_2 = 0.2, S_r = 0.1, D_f = 0.008$.

Fig 5.3 The variations of Darcy-Rayleigh number with square of wave number for steady and oscillatory convection $\lambda_1 = 0.75, \lambda_2 = 0.2, S_r = 0.5, D_f = 0.008$.

Fig 5.4 The variations of Darcy-Rayleigh number with square of wave number for steady convection with varying Soret number and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Fig 5.5 The variations of Darcy-Rayleigh number with square of wave number for steady convection with varying Dufour number and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Fig 5.6 The variations of Darcy-Rayleigh number with square of wave number for oscillatory convection with varying relaxation time and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Fig 5.7 The variations of square of frequency with square of wave number for oscillatory convection with varying relaxation time and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Fig 5.8 The variations of Darcy-Rayleigh number with square of wave number for oscillatory convection with varying retardation time and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Fig 5.9 The variations of square of frequency with square of wave number for oscillatory convection with varying retardation time and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.
Fig5.10  The variations of Darcy-Rayleigh number with square of wave number for oscillatory convection with varying Soret number and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Fig5.11  The variations of Darcy-Rayleigh number with square of wave number for oscillatory convection with varying Dufour number and $Le = 100, Ra_{D,S} = 1.0, \Phi = 10$.

Chapter VI

Fig6.1  Physical sketch of the Problem.

Fig6.2  The variations of Rayleigh number with square of wave number for various values of $Y^2$ with $Rs=10^4$, $Le=10^2$, $Pr=7.0$ and without Soret effect.

Fig6.3  The variations of square of frequency with square of wave number for various values $Y^2$ for the oscillatory convection without Soret effect.

Fig6.4  The variations of Rayleigh number with square of wave number for various values of $Y^2$ with $Rs=10^4$, $Le=10^2$, $Pr=7.0$ and with $S_r=0.5$.

Fig6.5  The variations of square of frequency with square of wave number for various values $Y^2$ for the oscillatory convection with $S_r=0.5$.

Fig6.6  The variations of Rayleigh number with square of wave number for various Soret number for the steady convection.

Fig6.7  The variations of Rayleigh number with square of wave number for various Soret number for the oscillatory convection.

Fig6.8  The variations of square of frequency with square of wave number for various values of Soret number for the oscillatory convection.

Fig6.9  The variations of Rayleigh number with square of wave number for various Solutal Rayleigh number for the steady convection.

Fig6.10  The variations of Rayleigh number with square of wave number for various Solutal Rayleigh number for the oscillatory convection.

Fig6.11  The variations of square of frequency with square of wave number for various values of Solutal Rayleigh number for the oscillatory convection.

Fig6.12  The variations of Rayleigh number for subcritical instability with square of wave number for various Soret number and fixed $Rs$, $Y^2$ for the steady convection.

Chapter VII

Fig7.1  Rayleigh number versus square of wave number with different Soret number (a) $S_r=0$, (b) $S_r=0.5$ and (c) $S_r=1$.

Fig7.2  Rayleigh number versus square of wave number with different Cattaneo number (a) $\hat{C} = 0.18$, (a) $\hat{C} = 0.19$ and (a) $\hat{C} = 0.20$. 
**Fig 7.3** Rayleigh number versus square of wave number for steady convection with varying Soret number.

**Fig 7.4** Rayleigh number versus square of wave number for oscillatory convection with varying Soret number.

**Fig 7.5** Rayleigh number versus square of wave number for oscillatory convection with varying Cattaneo number (a) $S_r=0$ and (b) $S_r=0.5$. 