1. INTRODUCTION

1.1. Intranasal drug delivery
 1.1.1. Possibilities for the use of the nasal cavity for drug delivery
 1.1.2. Anatomical and physiological consideration for intranasal delivery
 1.1.2.1. Anatomy
 1.1.2.2. Morphology and physiology of the nose
 1.1.2.3. Nasal mucus secretion and mucociliary clearance
 1.1.3. Advantages of nasal drug delivery
 1.1.4. Limitations of nasal drug delivery
 1.1.5. Factor affecting nasal drug absorption

1.2. Mucoadhesive drug delivery system
 1.2.1. Nanoparticles as a drug delivery approach
 1.2.1.1. Advantages of using nanoparticles as a drug delivery system
 1.2.1.2. Limitations of nanoparticulate system
 1.2.1.3. Polymeric nanoparticles
 1.2.1.4. Natural biodegradable polymers used to prepare nanoparticles
 1.2.1.5. Methods of Preparing Chitosan Micro/Nanoparticles

1.3. Osteoporosis
 1.3.1. Pathophysiology
 1.3.2. Consequences of osteoporosis
 1.3.3. Management and prevention of osteoporosis
 1.3.3.1. Non-pharmacologic interventions
 1.3.3.2. Pharmacologic interventions

2.0 LITERATURE REVIEW

2.1. Review of literature in the area of PLGA and chitosan coated PLGA based nanoparticulate drug delivery systems
2.2. Review of literature in the area of chitosan based nanoparticulate drug delivery systems
2.3. Patents related to raloxifene hydrochloride
2.4. Reported HPLC and LCMS/MS methods for raloxifene HCl

3.0 OBJECTIVE AND PLAN OF WORK

3.1. Objectives of the study
3.2. Rationale of the study
 3.2.1. Choice and selection of drug candidate
3.3. Drug profile of raloxifene HCl
 3.3.1 Physicochemical properties
 3.3.2. Pharmacology
 3.3.2.1. Mechanism of action
 3.3.2.2. Pharmacokinetics
 3.3.2.3. Indications
 3.3.2.4. Contraindications
 3.3.2.5. Precautions
 3.3.2.6. Drug- drug interactions
 3.3.2.7. Adverse effects
 3.3.2.8. Dosage and administration
 3.3.2.9. Overdosage
 3.3.2.10. Presentation and storage condition
3.4. Plan of work
4.0 EXPERIMENTAL

4.1. Materials

4.2. Equipments

4.3.1. Physical characterization and identification of raloxifene HCl

4.3.1.1. Organoleptic properties
4.3.1.2. Solubility
4.3.1.3. Partition coefficient
4.3.1.4. Loss on drying
4.3.1.5. IR spectroscopy
4.3.1.6. Differential scanning calorimetry (DSC)
4.3.1.7. X-ray-diffraction studies
4.3.1.8. Particle size determination
4.3.1.9. Surface area determination

4.3.2. Compatibility studies

4.3.3. Analytical methodology for raloxifene HCl

4.3.3.1. High-performance liquid chromatographic (HPLC) method
4.3.3.2. Ultra-performance liquid chromatographic (UPLC) method development
4.3.3.3. Liquid chromatography-mass spectrometry (LC-MS/MS) method for the analysis of raloxifene HCl in biological samples

4.3.4. Formulation, optimization and evaluation of nanoparticulate system for intranasal administration

4.3.4.1. Formulation and optimization of raloxifene loaded PLGA nanoparticles and chitosan coated PLGA nanoparticles
4.3.4.1.1. Preparation and optimization of PLGA nanoparticles and chitosan coated PLGA nanoparticles

4.3.4.2. Formulation development of chitosan nanoparticles (CSNPs) by ionic gelation method

4.3.4.2.1. Preparation of placebo chitosan nanoparticles
4.3.4.2.2. Preparation of drug loaded CSNPs
4.3.4.2.3. Formulation optimization of CSNPs by ionic gelation method using drug design expert
4.3.4.2.4. Characterization of optimized raloxifene HCl loaded chitosan nanoparticulate formulation
4.3.4.2.4.1. Surface morphology and shape
4.3.4.2.4.1.1. Transmission electron microscopy (TEM)
4.3.4.2.4.1.2. Scanning electron microscopy (SEM)
4.3.4.2.4.2. Particle size, particle size distribution
4.3.4.2.4.2.1. Photon correlation spectroscopy (PCS)
4.3.4.2.4.3. Crystallinity
4.3.4.2.4.3.1. Differential scanning calorimetry (DSC) analysis
4.3.4.2.4.3.2. X-ray powder diffraction (XRD) analysis
4.3.4.2.4.4. Interaction studies
4.3.4.2.4.4.1. FTIR spectroscopy

4.3.4.2.5. In vitro drug release study of raloxifene HCl loaded chitosan nanoparticles
4.3.4.2.5.1. Dialysis membrane specification
4.3.4.2.5.2. Treatment of dialysis bag
4.3.4.2.5.3. In vitro drug release study for chitosan nanoparticulate formulation
4.3.4.2.5.4. Establishment of mechanism of drug release

4.3.4.2.6. In vivo studies for intranasal drug delivery
4.3.4.2.6.1. Dose calculation for rats
4.3.4.2.6.2. Pharmacokinetic studies for intranasal administration
4.3.4.2.6.2.1. Experimental procedure
4.3.4.2.6.3. Biodistribution studies of nasal nanoparticulate formulation 87
4.3.4.2.7. In vitro in vivo correlation 87-88
4.3.4.2.8. Stability studies of optimized raloxifene HCl loaded chitosan nanoparticulate formulation
 4.3.4.2.8.1. Assay method for determining drug content of raloxifene HCl loaded chitosan nanosuspension in stability samples 89
 4.3.4.2.8.2. Accelerated stability testing of raloxifene HCl loaded chitosan nanoparticulate formulation according to ICH Q1A (R2) guidelines 89
 4.3.4.2.8.3. Accelerated stability study of raloxifene HCl loaded chitosan nanoparticulate formulation by conventional method using Arrhenius equation 89-90

5.0 RISULT AND DISCUSSION 91-145
5.1. Physical characterization and identification of raloxifene HCl 91-94
 5.1.1. Organoleptic properties 91
 5.1.2. Solubility 91
 5.1.3. Partition coefficient 91
 5.1.4. Loss on drying 91
 5.1.5. IR spectroscopy 91-92
 5.1.6. Differential scanning calorimetry (DSC) 92
 5.1.7. X-ray-diffraction studies 92-93
 5.1.8. Particle size determination 93
 5.1.9. Surface area determination 93-94
5.2. Compatibility studies 94-98
 5.2.1. Physical characterization 94-95
 5.2.2. DSC of drug excipients compatibility study 96-97
5.3. Analytical methodology for raloxifene HCl 98-113
 5.3.1. RP-HPLC method development 98-103
 5.3.1.1. Calibration curve of raloxifene HCl by RP-HPLC method 99-100
 5.3.1.2. Method validation of raloxifene HCl by RP-HPLC method 100
 5.3.1.2.1. System suitability 101
 5.3.1.2.2. Linearity 101
 5.3.1.2.3. LOQ and LOD 101
 5.3.1.2.4. Accuracy and precision 101-102
 5.3.1.2.5. Robustness 102
 5.3.1.2.6. Stability 102-103
 5.3.2. UPLC method development for raloxifene HCl 103-110
 5.3.2.1. Development of mobile phase 103-104
 5.3.2.2. Method validation of UPLC method 104-110
 5.3.2.2.1. System suitability 104
 5.3.2.2.2. Linearity 104-105
 5.3.2.2.3. LOQ and LOD 105
 5.3.2.2.4. Precision 105
 5.3.2.2.5. Accuracy 106
 5.3.2.2.6. Robustness 106
 5.3.2.2.7. Specificity 106-109
 5.3.2.2.8. Assay of raloxifene HCl in nanoparticulate formulation 109-110
 5.3.3. Liquid chromatography-mass spectrometry (LC-MS/MS) method 110-113
 for the analysis of raloxifene HCl
 5.3.3.1. Method development 110
 5.3.3.2. Method validation 111-113
 5.3.3.2.1. Linearity 111
 5.3.3.2.2. Precision and accuracy 111
5.3.3.2.3. Selectivity 111-112
5.3.3.2.4. Extraction recovery 112
5.3.3.2.5. Stability 113

5.4. Formulation, optimization and evaluation of chitosan nanoparticulate formulation

5.4.1. Preparation and optimization of PLGA nanoparticles and chitosan coated PLGA nanoparticles 113-114

5.4.2. Formulation development of chitosan nanoparticles (CSNPs) by ionic gelation method 114-130

5.4.2.1. Preparation of placebo chitosan nanoparticles 114-116
5.4.2.2. Preparation of drug loaded chitosan nanoparticles 116-118
5.4.2.3. Optimization of raloxifene loaded chitosan nanoparticles by using central composite design 119-130

5.4.2.3.1. Effect of independent factors on particle size 120-122
5.4.2.3.2. Effect of independent factors on drug entrapment efficiency 123-125
5.4.2.3.3. Effect of independent factors on drug loading 126-129

5.4.2.4. In vitro release studies for raloxifene loaded chitosan nanoparticulate suspension 131-133

5.4.2.4.1. Establishment of mechanism of drug release 132-133

5.4.2.5. Characterization of the optimized raloxifene HCl loaded chitosan formulation 133-138

5.4.2.5.1. Morphology and shape 134

5.4.2.5.1.1. TEM for particle size 134
5.4.2.5.1.2. SEM for surface studies 134

5.4.2.5.2. Particle size distribution (PSD) 135
5.4.2.5.3. Crystallinity 135-137

5.4.2.5.3.1. Differential scanning calorimetry (DSC) analysis 135-136
5.4.2.5.3.2. X-ray powder diffraction (XRD) analysis 136-137

5.4.2.5.4. Interaction study 137-138
5.4.2.5.4.1. FTIR analysis 137-138

5.4.2.6. In vivo studies for intranasal drug delivery 138-141

5.4.2.6.1. Pharmacokinetic parameters for chitosan nanoparticles for intranasal administration 138-139
5.4.2.6.2. Biodistribution studies for nasal nanoparticulate formulation 139-141

5.4.2.7. In vitro in vivo correlation 141-142

5.4.2.8. Stability studies on optimized chitosan nanoparticulate formulation 142-145

5.4.2.8.1. Accelerated stability testing according to ICH Q1A (R2) guidelines 142-143
5.4.2.8.2. Accelerated stability study by conventional method using Arrhenius equation 144-145

6.0 SUMMARY AND CONCLUSION 146-147

7.0 REFERENCES 148-162

APPENDIX 163