A STUDY OF INVERSE, MIXED BLOCK DOMINATION AND RELATED CONCEPTS IN GRAPHS

ABSTRACT
It is proved that every graph is a block tree. Varieties of block degrees and block-regular graphs have been defined. Expressions for the sum of block degrees are obtained. Several bounds for number of blocks and number of cutvertices in a graph are obtained. Using block distance we defined the central tendencies of a block, like B-radius and B-diameter of a graph. It is proved that block center of any graph is B-complete. Expressions for number of edges in the newly defined graphs are derived.

Various block domination parameters are defined. A vertex \(v \in V \) and a block \(b \in B(G) \) is said to block dominate (b-dominate) each other if \(v \) is incident on the block \(b \). A set \(D \subseteq V \) is said to be a vertex-block dominating set (VBD set) if every block in \(G \) is b-dominated by some vertex in \(D \). The vertex - block domination number \(\gamma_{vb}(G) \) is the cardinality of a minimum block dominating set of \(G \). We initiate a study of these new varieties of mixed block domination in graphs.

We define another parameter called inverse independence number of a graph. Extending the same concept for edge independent sets inverse matching number of a graph is defined. Using minimum clique number \(\theta(G) \), independent domination number of complement of any graph \(G \) is obtained. Finally in the last section, various inverse block domination parameters are defined and initiated the study of properties of inverse block domination.