BIBLIOGRAPHY
Agglutinin response to pertussis vaccination in the child.

Pertussis agglutinins in vaccinated mice: Difficulty in estimating the type specific response.
Indian J. Med. Res. 64, 393-398.

Pertussis antibodies in whooping cough.

Loss in the opacity of bacterial organisms during their inactivation for the production of whole cell vaccines.

Alsever, J.B. and Ainslie, R.B. (1941).
A new method for the preparation of dilute blood plasma and the operation of a complete transfusion service.
New York State J. Med. 41, 126-135.

Andersen, E.K. (1952).

Andersen, E.K. (1953).
Serological studies on H. pertussis, H. para-pertussis and H. bronchisepticus.

The relation of pertussis endotoxin to pertussis immunity in the mouse.

Fimbrial hemagglutinin in stationary and shake cultures of
Bordetella pertussis.
Infect. Immun. 25, 764-767.

Crystallization of pertussigen from Bordetella pertussis.
Infect. Immun. 31, 495-499.

Rabbit nasopharyngeal colonization by Bordetella pertussis: the
effects of immunization on clearance and on serum and nasal
antibody levels.
J. Hyg. 88, 475-486.

Antigenic relationship between serotype specific agglutinogen
and fimbriae of Bordetella pertussis.
Infect. Immun. 37, 1278-1281.

Antigens in whooping cough vaccine and antibody levels induced by
vaccination of children.

The location of surface antigens of Bordetella pertussis by
immuno-electron microscopy.
Dev. Biol. Stand. 61, 143-151.

Fimbriae of Bordetella pertussis. In: Protein-carbohydrate
Purification and characterization of a fimbrial haemagglutinin from
Bordetella pertussis for use in enzyme-linked immunosorbent assay.

Effect of lymphocytosis-promoting factor from Bordetella pertussis
on cerebellar cyclic GMP levels.
Infect. Immun. 36, 958-961.

Baillou, G. (1576).
Constitutio aestiva, Anni Domini. In: Major, R.H. (ed.) Classic
descriptions of disease, 1945, 3rd edition. Springfield, Illinois:

DTP vaccine reactions: Effect of prior reactions on rate of
subsequent reactions.
Dev. Biol. Stand. 61, 423-428.

Diphtheria and tetanus toxoids and pertussis vaccine adsorbed
(DTP): Response to varying dosage and schedule.
Dev. Biol. Stand. 61, 297-307.

Soluble protective antigens from Bordetella pertussis prepared
with sodium deoxycholate.
J. Immunol. 90, 72-80.

Bauman, E., Binder, B.R., Falk, W., Huber, E.G., Kurs, R. and Rasanelli, K.
(1985).
Development and clinical use of an oral heat-inactivated whole
cell pertussis vaccine.
Dev. Biol. Stand. 61, 511-516.
The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin.

Bell, J.A. (1941).
Pertussis prophylaxis with two doses of alum precipitated vaccine.

Bell, J.A. (1948).
Pertussis immunization. Use of two doses of alum precipitated mixture of diphtheria and pertussis vaccines.

Intracranial infection of mice with Bordetella pertussis.

Histamine sensitivity in mice of different ages after Bordetella pertussis treatment or adrenalectomy.

Action of the histamine sensitizing factor from Bordetella pertussis on inbred and random bred strains of mice.

Vascular permeability in spinal cords and brains from rats with hyperacute EAE induced with the aid of pertussigen.

Vascular permeability changes in the central nervous system of rats with hyperacute experimental allergic encephalomyelitis induced with the aid of a substance from Bordetella pertussis.
Infect. Immun. 21, 627-637.
Observations on the stability of biological active substances in *Bordetella pertussis*.
Z. Immun. Forsch. 120, 173-185.

Studies on the chemical and immunological structure of *Bordetella pertussis*.

Clinical and serological reactions after immunization of children in Ghana, West Africa, with the Japanese acellular pertussis vaccine.
Dev. Biol. Stand. 61, 539-543.

Studies with *H. pertussis* XII. Separation of the agglutinogen of *B. parapertussis* from other cellular components.

Bordet, J. and Gengou, O. (1906).
Le microbe de la coqueluche.

Bordet, J. and Gengou, O. (1907).
Note complémentaire sur le microbe de la coqueluche.
Ann. Inst. Pasteur. 21, 720-726.

L'endotoxine coqueluche.

Bordet, J. and Sleeswyk (1910).
Sérodiagnostic et variabilité des microbes suivant le milieu de culture.
Bradford, W.L. (1938).
Experimental infection in the mouse produced by intratracheal inoculation with *Hemophilus pertussis*.

Bradford, W.L. and Slavin, B. (1940).
Nasopharyngeal cultures in pertussis.

Clinical evaluation of components of a pertussis vaccine.

Reactions to combined diphtheria, tetanus and pertussis vaccine: A comparison between plain vaccine and vaccine adsorbed on aluminium hydroxide.

Experimental infection with *Haemophilus pertussis* in the mouse by intranasal inoculation.
Br. J. Exp. Pathol. 18, 83-90.

Serological response to filamentous hemagglutinin and lymphocytosis-promoting toxin of *Bordetella pertussis*.
Infect. Immun. 41, 1150-1156.

The influence of environment on the mouse weight gain test for estimating the toxicity of *Bordetella pertussis* vaccines.
Prog. Immunobiol. Stand. 3, 319-323.
Cameron, J. and Knight, P.A. (1972).

Cameron, J. (1976).
Problems associated with the control testing of pertussis vaccine.

Pertussis vaccine: Mouse-weight-gain (Toxicity) test.
Dev. Biol. Stand. 34, 213-215.

Cameron, J. (1979).

Pertussis vaccine. Formalin as preferred detoxifying agent.
Lancet 1, 880-881.

Toxicity testing of pertussis vaccines: Effect of increased sensitivity of mice to Bordetella pertussis.
J. Biol. Stand. 12, 19-24.

Cameron, J. (1985).
In: Discussion.
Dev. Biol. Stand. 61, 315.

Association between Bordetella pertussis agglutinogen 2 and fimbriae.

Centers for Disease Control (1982).
Laboratory and epidemiological studies of pertussis in Bombay.
Cited from Diphtheria, Tetanus, Pertussis- International Symposium,

Acellular and whole-cell pertussis vaccines in Japan: Report
of a visit by US Scientists.

Recherches sur la coqueluche.

Church, M.A. (1979).
Evidence of whooping cough vaccine efficacy from the 1978 whooping
cough epidemic in Hertfordshire.
Lancet 2, 188-190.

Development of pertussis vaccine production and control in the
National Institute of Public Health in the Netherlands during the
years 1950-1962.
Antonie van Leeuwenhoek 29, 183-201.

Pertussis vaccine research in the Rijks Instituut voor de
Volksgezondheid (The Netherlands).

Relation between toxicity tests in mice and reactions in children
using four lots of quadruple vaccine (DPT-polio).

Two injections of Diphtheria-Tetanus-Pertussis-Polio vaccine as the
backbone of a simplified immunization schedule in Developing Countries.
Rev. Inf. Dis. 6(Supp 2), S350-S351.
 Pertussis vaccine prepared with phase I culture grown in fluid medium.

 Phagocyte impotence caused by an invasive bacterial adenylate cyclase.
 Science 217, 948-950.

 Bordetella adenylate cyclase: Host toxicity and diagnostic utility.
 Dev. Biol. Stand. 61, 3-10.

Cooper, G.N. (1952).
 Active immunity in mice following the intranasal injection of
 sub-lethal doses of living Haemophilus pertussis.

Court, D., Jackson, H. and Knox, G. (1953).
 The recognition of whooping cough.
 Lancet 2, 1057-1060.

 Separation, purification and properties of the filamentous
 hemagglutinin and the leukocytosis promoting factor-hemagglutinin
 from Bordetella pertussis. In: Weinstein, L. and Fields, B.N. (eds.)
 Seminars in Infectious Disease. Robbins, J.B., Hill, J.C. and
 Sadoff, J.C. (eds.) Volume IV: Bacterial Vaccines. New York:
 Thieme-Stratton Inc. pp 371-379.

 Prospective protective antigens and animal models for pertussis.
 D.C.: American Society for Microbiology. pp 172-175.

 Bordetella Whooping-cough. In: Medical Microbiology Vol. I
 Twelfth edition. The English Language Book Society and

Dolby, J.M. (1958). The separation of the histamine-sensitizing factor from the protective antigens of B. pertussis. Immunology 1, 328-337.

Vaccination against whooping cough.
Lancet 1, 1138-1139.

Significance of the loss of potency in the pertussis component
of certain lots of 'quadruple antigen'.

Serological study of Bordetella pertussis and related species.

Round Table Conference on Pertussis Immunization. Prauge 1, 81.

Mouse protective properties of Bordetella pertussis. Serotypes in
passive tests.
J. Bacteriol. 93, 1758-1761.

Adenylate cyclase activity of Bordetella organisms I. Its production
in liquid medium.

Purification and characterization of heat-labile toxin from
Bordetella bronchiseptica.

Reported number of cases and deaths 1972-1981. In: Vol. IV, No. 3.
New Delhi: Directorate General of Health Services. Ministry of
Health and Family Welfare. p 37.

The preparation of the toxin of H. pertussis: Its properties and
relation to immunity.
Evans, D.G. (1947).
The failure of whooping-cough and adult sera to neutralize pertussis toxin.

An agglutinin production test in the study of pertussis vaccine.

An improved method for the testing of the ability of pertussis vaccine to produce agglutinin.

Antitoxin in human pertussis immune globulins.
J. Biol. Stand. 14, 297-303.

Repeated estimations of an immunological response curve.

Host-parasite relationship in experimental pertussis I. Histamine-sensitizing and protective activities of pertussis vaccine in mice.

Sensitization and desensitization of mice to histamine and serotonin by neurohumors.

The inhibition of pertussis haemagglutinin by extracts of erythrocytes.
Br. J. Exp. Pathol. 29, 357-363.

The haemagglutinin of Haemophilus pertussis II. Observations on the structure of the haemagglutinating complex of culture supernatants.

Studies with H. pertussis VI. Antigenicity of the toxins and the relation to other culture components from the several phases.

Studies with H. pertussis V. Agglutinogenic relationship of the phases.
J. Bacteriol. 41, 457-471.

Intradermal test for susceptibility to and immunization against whooping cough using agglutinogen from phase I H. pertussis.

Etude des cultures de H. pertussis II. Properties protectrices comparatives (chez la souris) de diverses fractions.

Purification and preliminary characterization of agglutinogen 3 from Bordetella pertussis.
Dev. Biol. Stand. 61, 187-196.

Freeman, J. (1909).
The microbe of whooping cough.

Infection of chick embryos with H. pertussis reproducing pulmonary lesions of whooping cough.
Am. J. Pathol. 13, 927-938.
Delayed hypersensitivity induced by anti-T-cell-line antisera is enhanced by pertussigen and not restricted by histocompatibility genes.

Comparative biological activities of whole cell pertussis vaccine and a new acellular preparation.

Relative stability of pertussis vaccine preserved with merthiolate, benzethonium chloride or the parabens.
Appl. Microbiol. 13, 564-569.

Effect of concentration of merthiolate upon potency of pertussis vaccine.
Appl. Microbiol. 15, 203-204.

The standardization of an assay for pertussis toxin and antitoxin in microplate culture of Chinese hamster ovary cells.

Spurious protein activators of Bordetella pertussis adenylate cyclase are calmodulin.

Studies on phase variation in Bordetella pertussis.
Dev. Biol. Stand. 61, 255-264.
Detection, isolation and analysis of a released *Bordetella pertussis* product toxic to cultured tracheal cells.
Infec. Immun. 36, 782-794.

Bordetella pertussis tracheal cytotoxin.
Dev. Biol. Stand. 61, 103-111.

Neutralizing antibodies to pertussis toxin in whooping cough.

In: Discussion.
Dev. Biol. Stand. 61, 379-383.

Studies on mechanism of ascites produced by pertussis vaccine.

Effect of storage temperatures on opacity and total nitrogen content of cholera vaccine.
Vaccine 2, 284-286.

The titration of tetanus antitoxin I. Factors affecting the sensitivity of indirect haemagglutination test.
J. Biol. Stand. 12, 11-17.

The titration of tetanus antitoxin II. A comparative evaluation of the indirect haemagglutination and toxin neutralization tests.
J. Biol. Stand. 12, 137-143.

Induction of a novel morphological response in Chinese hamster
ovary cells by pertussis toxin.
Infect. Immun. 40, 1198-1203.

Hewlett, E.L., Weiss, A.A., Crane, J.K., Pearson, R.D., Anderson, H.J.,
Myers, G.A., Evans, W.S., Hantske, L.L., Kay, H.D. and Cronin,
Bordetella extracytoplasmic adenylate cyclase: actions as a
bacterial toxin.
Dev. Biol. Stand. 61, 21-26.

(1985).
Bordetella adenylate cyclase Toxin: Its intoxication of mammalian
cells and effects on cell function. In: Sekura, R.D., Moss, J.
pp. 241-250.

Hewlett, R.T. (1929).
Whooping cough and Bacillus pertussis - Chancroid and Bacillus
ducrey i i - Conjunctivitis, Bacillus lacunatus and other organisms.
In: A system of Bacteriology in relation to Medicines, Vol. II.

Pertussis-containing vaccines: The relationship between laboratory
toxicity tests and reactions in children.
Sym. Series Immunobiol. Stand. 13, 150-156.

Adverse reactions to pertussis vaccine, pertussis vaccine risk:
benefit, Control testing of pertussis vaccines. Session V of
Fourth International Symposium on Pertussis held at Geneva,
Dev. Biol. Stand. 61, 387-507.

The role of surface antigens in the protective potency of Bordetella pertussis suspensions as measured by the intracerebral technique in mice. J. Med. Microbiol. 1, 119-126.

Huenekens, E.J. (1917).
Cited from Hewlett (1929).

A new culturing method for production of filamentous hemagglutinin
of Bordetella pertussis.

Substrate specificity and purification by affinity combination
methods of the two Bordetella pertussis hemagglutinins. In:
Manclark, C.R. and Hill, J.C. (eds.) International Symposium on

Isolation of the lymphocytosis promoting factor-haemagglutinin of
Bordetella pertussis by affinity chromatography.
Biochimia Biophysica Acta 580, 175-185.

Heterogeneity of the filamentous haemagglutinin of Bordetella
pertussis studied with monoclonal antibodies.

Release and purification of fimbriae from Bordetella pertussis.
Dev. Biol. Stand. 61, 153-163.

Characterization of the body weight-decreasing toxicities in mice by
the lymphocytosis-promoting factor and the heat-labile toxin of
B. pertussis and endotoxin.

A sensitive assay method for histamine-sensitizing factor using
change in rectal temperature of mice after histamine challenge
as a response.
J. Biol. Stand. 7, 21-29.
Clinical efficacy of the Japanese acellular pertussis vaccine after intrafamilial exposure to pertussis patients.
Dev. Biol. Stand. 61, 531-537.

A curious histamine-sensitizing activity shown by the newly-developed Japanese acellular pertussis vaccine.
Dev. Biol. Stand. 61, 453-460.

Modulation of the biologic activities of Ig E-binding factor II.
Physiochemical properties and cell sources of glycosylation-enhancing factor.
J. Immunol. 130, 1802-1808.

Histamine sensitizing activity of various pertussis vaccines.
Z. Immun. Forsch. 121, 143-158.

Some principles and problems of pertussis vaccine preparation.
Symp. Series Immunobiol. Stand. 13, 48-54.

Japan's experience in pertussis epidemiology and vaccination in the past thirty years.

Toxicity of washings from H. pertussis for mice.

Progress report on pertussis immunization.
Am. J. Publ. Hlth. 26, 8-12.
A study in the active immunization against pertussis.
Am. J. Hyg. 29, 133-153.

Use of alum-treated pertussis vaccine and of alum-precipitated combined pertussis vaccine and diphtheria toxoid for active immunization.
Am. J. Publ. Hlth. 32, 615-626.

A field study of alum precipitated combined pertussis vaccine and diphtheria toxoid for active immunization.

Mouse protection tests in the study of pertussis vaccines. A comparative series using the intracerebral route for challenge.
Am. J. Publ. Hlth. 37, 803-810.

A study of the stability of pertussis vaccine under different conditions of storage.

Haemagglutinins of the Haemophilus group.
Nature 160, 63.

The haemagglutinin of Haemophilus pertussis I. Haemagglutinin as a protective antigen in experimental murine pertussis.

Results with a new DTP vaccine in Japan.
Dev. Biol. Stand. 61, 545-561.

The altered reactivity of mice after immunization with Haemophilus pertussis vaccine.
J. Immunol. 70, 11-420.
Effect of heat on the sensitizing and shocking properties of Hemophilus pertussis.
J. Immunol. 77, 115-118.

The altered reactivity of mice after inoculation with Bordetella pertussis vaccine.

Capsules and mucoid envelopes of bacteria.
J. Hyg. (Camb.) 46, 345-348.

Kristensen, B. (1933).
Occurrence of the Bordet Gengou Bacillus.

Kumar, V., Sahai, C., Gupta, P. and Kumar, A. (1982).
Studies on the stability of tetanus and pertussis components of DPT vaccine on exposure to different temperatures.
Indian J. Pathol. Microbiol. 25, 50-54.

On a possible new kind of toxic substance produced by Bordetella pertussis.

Attempts at analysis of toxicity of pertussis vaccine I. Body weight-decreasing toxicity in mice.

Attempts at analysis of toxicity of pertussis vaccine III. Effects of endotoxin on leucocytosis in mice due to lymphocytosis promoting factor and reference preparations for determinations of lymphocytosis-promoting factor.
Review: Toxicity and toxicity testing of pertussis vaccine.

Antigenic modulation of Bordetella pertussis.
J. Hyg. (Camb.) 58, 57-93.

The white blood cell count and the erythrocyte sedimentation rate in pertussis.

Whooping cough.

Lawson, G.M. (1933).
Epidemiology of whooping cough.

Leslie, P.H. and Gardner, A.D. (1931).
The phases of Haemophilus pertussis.
J. Hyg. 31, 423-434.

Hyperacute allergic encephalomyelitis adjuvant effect of pertussis vaccines and extracts.

Lewis, K., Cherry, J.D., Baraff, L.J., Robinson, R.G., Dudenhoef fer, F.E.,
Hoiroyd, H.J., Baker, L.R., Parchione, S.L., Gurmith, M., Vernon,
An open study evaluating the reactogenicity and immunogenicity of
a DTP vaccine containing an acellular pertussis component in four to
six year old children.
Dev. Biol. Stand. 61, 563-569.
The carrier state of pertussis.
Am. J. Epidemiol. 88, 422-427.

Host-parasite Interactions in pertussis. In: Manclark, C.R. and
Hill, J.C. (eds.) International Symposium on Pertussis held at

Acute experimental autoimmune encephalomyelitis in mice I. Adjuvant
action of Bordetella pertussis is due to vasoactive amine
sensitization and increased vascular permeability of the Central
Nervous System.
Cellular Immunol. 73, 299-310.

Production and properties of Bordetella pertussis heat labile toxin.

Locht, C., Barstud, P.A., Coligan, J.E., Mayer, L., Munoz, J.J., Smith,
Molecular cloning of pertussis toxin genes.

Can pertussis be eradicated by vaccination?
Lancet 1, 738.

Protein measurement with Folin reagent.

Maclean, I.H. (1937).
A modification of the cough plate method of diagnosis in whooping
cough.
Madsen, T. (1933).
Vaccination against whooping cough.

A comparison of the indirect haemagglutination test with the toxin neutralization test for the estimation of diphtheria antitoxin in mouse sera.

The histamine-sensitizing property of Haemophilus pertussis.
J. Hyg. 53, 196-211.

Some surface components of Haemophilus pertussis: Immunizing antigen, histamine-sensitizing factor and agglutinogen.

Selective breeding to establish a standard mouse for pertussis vaccine bioassay II. Bioreponses of mice susceptible and resistant to sensitization by pertussis vaccine HSF.
J. Biol. Stand. 3, 353-363.

Pertussis vaccine research.

Prospects for a new acellular pertussis vaccine.

Specific anti-**Bordetella pertussis** activities in human blood examined by enzyme-linked immunoassay and biological assay. Dev. Biol. Stand. 61, 341-352.

In Vitro inhibition of murine macrophage migration by **Bordetella pertussis** lymphocytosis promoting factor. Infect. Immun. 45, 718-725.

Medical Research Council. (1951).

Medical Research Council. (1956).

Vaccination against whooping cough: Final Report.

Memorandum from a WHO meeting. Developments in pertussis vaccines.

Current status of pertussis and pertussis vaccination in Finland.

Miller, D.L., Rose, E.M., Alderslade, R., Bellman, M.H. and Rawson, N.S.B.
Pertussis immunization and serious acute neurological illness in children.

Whooping cough and whooping cough vaccine: The risks and benefits debate.

Pertussis vaccine and whooping cough as risk factors in acute neurological illness and death in young children.
Dev. Biol. Stand. 61, 389-394.

Progress towards a new pertussis vaccine.

Miller, J.J. (1937).
The loss of specific substance in washing phase 1 H. pertussis vaccines.

Immunization against pertussis during the first four months of life.
Pediatrics 4, 468-478.

Vaccination of genetically susceptible mice against chronic infection with Nematocapsidae dubius using pertussigen as adjuvant.

Microbiol. Espanola 5, 177.

Morse, S.I. (1965).
Studies on the lymphocytosis induced in mice by Bordetella pertussis.
J. Exp. Med. 121, 49-68.

Isolation and properties of the leukocytosis and lymphocytosis promoting factor of Bordetella pertussis.

Vaccines against pertussis.
Public Health 81, 252-264.

Pertussis epidemiology and control.

The effect of H. pertussis sensitivity of mice to serotonin.
Antigens of Bordetella pertussis I. Activities of cell wall and protoplasm.

Symposium on relationship of structure of microorganisms to their immunological properties I. Immunological and other biological activities of Bordetella pertussis antigens.

Antigens of Bordetella pertussis III. The protective antigen.

Some histamine sensitizing properties of soluble preparations of the histamine sensitizing factor (HSF) from Bordetella pertussis.

Antigens of Bordetella pertussis IV. Effect of heat, merthiolate and formaldehyde on histamine sensitizing factor and protective activity of soluble extracts from Bordetella pertussis.
J. Bacteriol. 91, 2175-2179.

Histamine-sensitizing factors from microbial agents, with special reference to Bordetella pertussis.

Pertussigen: A substance from Bordetella pertussis with many biological activities.
Bordetella pertussis - Immunological and other biological activities.

Purification and activities of pertussigen, a substance from
Bordetella pertussis. In: Rosenberg, P. (ed.) Toxins: Animal,

Biological activities of Bordetella pertussis. In: Manclark, C.R.
and Hill, J.C. (eds.) International Symposium on Pertussis held at
Printing Office. pp. 143-150.

Mouse-protecting and histamine-sensitizing activities of pertussigen
and fimbrial hemagglutinin from Bordetella pertussis.
Infect. Immun. 32, 243-250.

Biological activities of crystalline pertussigen from Bordetella
pertussis.
Infect. Immun. 33, 820-826.

Studies on crystalline pertussigen. In: Weinstein, L. and Fields,
B.N. (eds.) Seminars in Infectious Diseases. Robovins, J.B., Hill,
J.C. and Sadoff, J.C. (eds.) Vol. IV Bacterial Vaccines. New York:
Thieme-Stratton Inc. pp. 395-400.

Role of pertussigen from Bordetella pertussis on the induction of
experimental allergic encephalomyelitis (EAE). In: Molecular
pp. 249-256.
Adoptive transfer of experimental allergic encephalomyelitis in mice
with the aid of pertussigen from *Bordetella pertussis*.
Cell. Immunol. 86, 541-545.

Production of experimental allergic encephalomyelitis with the aid
of pertussigen in mouse strains considered genetically resistant.
J. Neuroimmunol. 7, 91-96.

Elicitation of experimental allergic encephalomyelitis (EAE) in mice
with the aid of pertussigen.

Biological activities of pertussigen (pertussis toxin). In: Sekura,
R.D., Musz, J. and Vaughan, M. (eds.) Pertussis Toxin. Orlando:

International Collaborative studies on the pertussis vaccine
potency assay. Part played by the challenge in the Mouse-Protection
Test.

Nagel, J. (1967).
Isolation from *Bordetella pertussis* of protective antigen free
from toxic activity and histamine sensitizing factor.

Haemagglutinating substance of *Bordetella pertussis*.

Toxicity and potency of a purified pertussis vaccine. In: Manclark,
C.R. and Hill, J.C. (eds.) International Symposium on Pertussis held

Bordetella heat labile toxin: Further purification, characterization and mode of action.
Dev. Biol. Stand. 61, 93-102.

Cited from Hewlett, R.T. (1929).

Dual mechanisms involved in development of diverse biological activities of islet-activating protein (pertussis toxin) as revealed by chemical modification of the toxin molecule.
Dev. Biol. Stand. 61, 51-61.

The use of Bordetella pertussis preserved in liquid nitrogen as a challenge suspension in the Kendrick mouse protection test.
J. Biol. Stand. 3, 11-29.

Bordetella adenylate cyclase: a genus specific protective antigen and virulence factor.
Dev. Biol. Stand. 61, 27-41.

Transplacental and transcolostral immunity to pertussis in a mouse model using acellular pertussis vaccine.

Oláh, G. (1942).
Cited from Wilson, G.S. and Miles, A. (1975).
Stabilization of pertussis vaccine in the presence of benzethonium chloride.
J. Bacteriol. 87, 543-546.

Pertussis.
Medicine 54, 427-469.

Chemical studies on cellular components of Bordetella pertussis I.
Purification and properties of agglutinogen.
J. Bacteriol. 82, 648-656.

Histamine shock in mice sensitized with Hemophilus pertussis vaccine.

Anaphylaxis and histamine shock in mice.

Role of the genetics and physiology of Bordetella pertussis in the production of vaccine and the study of host-parasite relationship in pertussis.

Cell surface antigens of Bordetella pertussis.
Dev. Biol. Stand. 61, 123-136.
Cell envelope proteins of Bordetella pertussis.

Loss of adenylate cyclase activity in variants of Bordetella pertussis.

Measurement of tetanus antitoxin I. Indirect haemagglutination.
J. Biol. Stand. 8, 177-189.

Studies on the fractionation of Haemophilus pertussis extracts.

Peppier, M.S. (1982).
Isolation and characterization of isogenic pairs of dommed hemolytic and flat nonhemolytic colony types of Bordetella pertussis.

Effect of proteolytic enzymes, storage and reduction on the structure and biological activity of pertussigen, a toxin from Bordetella pertussis.
Dev. Biol. Stand. 61, 75-87.

The comparison of toxicity of pertussis vaccines in children and mice.
Symp. Series Immunobiol. Stand. 13, 141-149.

An International Collaborative study on the measurement of opacity of bacterial suspensions.
J. Biol. Stand. 1, 1-10.

Field study of the prophylactic value of pertussis vaccine.
PHLS Epidemiological Research Laboratory. (1982).
Efficacy of pertussis vaccination in England.

Separation and immunologic evaluation of soluble pertussal antigens.
Science 106, 36-37.

Adsorption of protective antigen of Haemophilus pertussis on human red cell stroma.

Protective antigen of Haemophilus pertussis.
Lancet 1, 1257-1260.

Pittman, M. (1951a).
Influence of sex of mice on histamine sensitivity and protection against Haemophilus pertussis.
J. Infect. Dis. 89, 296-299.

Pittman, M. (1951b).
Comparison of the histamine-sensitizing property with the protective activity of pertussis vaccines for mice.
J. Infect. Dis. 89, 300-304.

Influence of preservatives, of heat and of irradiation on mouse protective activity and detoxification of pertussis vaccine.
J. Immunol. 69, 201-216.

Variability of the potency of pertussis vaccine in relation to the number of bacteria.
J. Pediat. 45, 57-69.

Effect of Haemophilus pertussis on immunological and physiological reactions.
Instability of pertussis vaccine component in quadruple antigen vaccine.

Pertussis vaccine testing for freedom from toxicity.

Mouse strain variation in response to pertussis vaccine and tetanus toxoid.
Symp. Series Immunobiol. Stand. 5, 161-166.

Determination of the bacterial content of cholera vaccine.
J. Biol. Stand 2, 1-10.

Determination of the histamine sensitizing unitage of pertussis vaccine.
J. Biol. Stand. 3, 185-191.

History, benefits and limitations of Pyrex glass particle opacity references.
J. Biol. Stand. 4, 115-125.

Pertussis Toxin: The cause of the harmful effects and prolonged immunity of whooping cough. A hypothesis.
Mouse breeds and the toxicity test for pertussis vaccine.

Pittman, M., Furman, B.L. and Wardlaw, A.C. (1980).
Bordetella pertussis respiratory tract infection in the mouse: pathophysiological responses.

The concept of pertussis as a toxin-mediated disease.

Neurotoxicity of Bordetella pertussis.
Neurotoxicol. 7, 53-68.

Post vaccination symptoms following DTP and DT vaccination.
Dev. Biol. Stand. 61, 407-410.

Problems involved in combining pertussis with killed viral vaccines.
Symp. Series Immunobiol. Stand. 7, 183-190.

Agglutinin directed against Bordetella pertussis in a Chicago population.
J. Infect. Dis. 147, 959.

Factors influencing the assay of the histamine-sensitizing factor of Haemophilus pertussis.
Type specific immunity against whooping cough.

Type-specific immunity against intracerebral pertussis infection in mice.
Nature (Loncon) 197, 508-509.

Effectiveness of pertussis vaccines.

Potency tests of pertussis vaccines. Doubtful value of intracerebral challenge test in mice.

Pertussis: The epidemiological situation in various countries-Serotypes.

Technical problems in the laboratory diagnosis and prevention of whooping cough.
Lab. Practi-e 19, 482-486.

Efficacy of pertussis vaccine - a brighter horizon.
 Pertussis agglutinins in vaccinated children: better response with adjuvant.
 J. Hyg. (Camo.) 73, 119-125.

 What makes a good pertussis vaccine?
 Prog. Drug Res. 19, 341-346.

 Protection by pertussis vaccine: Little cause for concern.
 Lancet 1, 1065-1067.

 Mouse or man? Which are pertussis vaccine to protect?
 J. Hyg. (Camo.) 76, 249-256.

 Some unsolved problems with vaccines.

 Experimental pertussis infection in the rabbit: similarities with infection in primates.
 J. Infect. 2, 227-235.

 Toxicity of pertussis vaccine.

 A reappraisal of serotype factors 4, 5 and 6 of Bordetella pertussis.
 J. Hyg. (Camo.) 88, 39-46.

 Pertussis vaccination - the time to act is now.
Pertussis component vaccine in Japan.
Lancet 1, 456.

Essential immunogens in human pertussis: The role of fimbriae.
Dev. Biol. Stand. 61, 137-141.

Influence of nicotinic acid on the antigenic structure of Bordetella pertussis.

Fractionation of Bordetella pertussis.

Studies in immunity to pertussis.

A study of the stability of the pertussis component of diphtheria-
tetanus-pertussis (DTP) vaccines.
J. Biol. Stand. 13, 267-270.

Latex agglutination test for pertussis antibody status of children
before and after vaccination.

Bordetella pertussis infection in Chandigarh.

The effects of purified components of Bordetella pertussis in the
weight gain test for the toxicity testing of pertussis vaccines.
J. Biol. Stand. 14, 57-65.
Reed, L.J. and Muench, H. (1938).
A simple method of estimating fifty percent endpoints.
Am. J. Hyg. 27, 493-497.

Relations of acid base equilibrium to the pathogenesis and
treatment of whooping cough.

Bordetella pertussis filamentous hemagglutinin gene: Molecular
cloning of a potential coding sequence.
Dev. Biol. Stand. 61, 265-271.

Etudes sur le phosphate de calcium comme adjuvant de l'immunité.
Symp. Series Immunobiol. Stand. 6, 77-88.

Pertussis vaccine preparation.
Symp. Series Immunobiol. Stand. 13, 44-47.

Procede de fabrication de vaccins à l'aide du glutaraldehyde.

Préparation de vaccins antitoxiques et antimicrobiens à l'aide de
glutaraldéhyde.

Nouveau procédé d'inactivation pour la préparation de vaccins.
Dev. Biol. Stand. 27, 236-248.

Etudes sur les anatoxines préparées à l'aide du glutaraldéhyde.

Robbins, J.B. (198-).

The preparation of distinct protective antigens from Bordetella pertussis.
FEMS Microbiol. Lett. 10, 241-244.

Synergistic effect of Bordetella pertussis lymphocytosis-promoting factor on protective activities of isolated Bordetella antigens in mice.
Infect. Immun. 40, 523-528.

Structure and biological properties of solubilized envelope proteins of Bordetella pertussis.
Infect. Immun. 39, 590-598.
Pertussis vaccine: present status and future prospects.
Vaccine 3, 11-22.

Protection against intranasal infection of mice with Bordetella pertussis.
Dev. Biol. Stand 61, 165-172.

Whooping cough immunization in France and Britain.

Antigens of Bordetella pertussis V. Separation of agglutinogen I and mouse-protective antigen.

New and improved techniques for vaccine production. In: Proceedings of Symposium on Progress in Vaccinology held at National Institute of Immunology, New Delhi, 1-5 December, 1986. Berlin: Springer-Verlag, IN PRESS.

Some factors affecting the growth of Bordetella pertussis.

Severe active cutaneous hypersensitivity in the rat produced by Hemophilus pertussis vaccine.
J. Exp. Med. 110, 751-770.

Stimulation of IgE by pertussigen.
IRCS Med. Sci. 7, 612.
Early immunization against pertussis with alum precipitated vaccine.

Studies on pertussis immunization.

Histamine sensitivity in children after pertussis infection.

Antibody against whooping cough in normal human population.
Indian J. Med. Res. 70, 5-12.

Agglutinin response against pertussis vaccine in mice.

Total and type specific agglutinins against pertussis vaccine in mice.

Studies on pertussis vaccine and induced phase variation of
Bordetella pertussis.
Doctorate Thesis, Chandigarh: Panjab University.

Acetone-treated pertussis vaccine - a potent and safer new pertussis
vaccine.
J. Biol. Stand 13, 315-320.

Affinity of pertussis toxin produced by Bordetella pertussis for
human haptoglobin: application to the in vitro assay of the toxin.
Protective antigens of *Bordetella pertussis*. Mouse-protection test against intracerebral and aerosol challenge of *B. pertussis*.
Dev. Biol. Stand. 61, 461-467.

Isolation of protective antigen from *Bordetella pertussis*.

Leukocytosis-promoting factor of *Bordetella pertussis*. II. Biological properties.
Infect. Immun. 7, 992-999.

Leukocytosis-promoting factor of *Bordetella pertussis*. III. Its identity with protective antigen.
Infect. Immun. 9, 801-810.

Aerosol infection of mice with *Bordetella pertussis*.
Infect. Immun. 29, 261-266.

Role of antibody to leukocytosis-promoting factor hemagglutinin and to filamentous hemagglutinin in immunity to pertussis.
Infect. Immun. 31, 1223-1231.

Effect of *Bordetella pertussis* components on IgE and IgG1 responses.

Effect of dermonecrotic toxin of *Bordetella pertussis* on the spleen of CFW and C57BL/10ScN Mice.
Toxicon Suppl. **3**, 393-396.

Pertussis toxin: Affinity purification of a new ADP-ribosyl transferase.

Pertussis toxin: Structural elements involved in the interaction with cells. In: Sekura, R.D., Moss, J. and Vaughan, M. (eds.)

The use of the US opacity standard.

Purification and partial characterization of filamentous haemagglutinin from *Bordetella pertussis* using monoclonal antibody.

Enhancement of the intensity, persistence and passive transfer of delayed type hypersensitivity lesions by pertussigen in mice.

Studies on the mechanism of the enhancement of delayed-type hypersensitivity by pertussigen.
J. Immunol. **133**, 1716-1722.
Cloning of *Bordetella pertussis* outer membrane proteins in
Escherichia coli.
Dev. Biol. Stand. 61, 273-280.

Sharma, S.B., Gupta, R.K., Maheshwari, S.C., Bhandari, S.K., Kumar, A.,
Standardization of First National Standard for Pertussis Vaccine.
Paper presented at the National Seminar on Quality Control of
Vaccines held at the Central Research Institute, Kasauli from 12th

Shefcyk, J., Yassin, R., Voipi, M., Molski, T.F.P., Naccache, P.H., Munoz,
Pertussis but not cholera toxin inhibits the stimulated increase
in actin association with the cytoskeleton in rabbit neutrophils:
Role of the "G Proteins" in stimulus response coupling.

Shibley, G.S. and Hoelscher, H. (1934).
Studies on whooping cough I. Type-specific (S) and dissociation
forms of *Haemophilus pertussis*.
J. Exp. Med. 60, 403-418.

Active immunization of tuberculous children against whooping
cough with Sauer's vaccine.

Haemophilus and Bordetella. In: Wilson, G., Miles, A. and Parker,
M.T. (eds.) Topley and Wilson's Principles of Bacteriology,
Virology and Immunity Vol. 2. Systemic Bacteriology. London:

Bacterial Infections of the Respiratory Tract. In: Wilson, G.,
Miles, A. and Parker, M.T. (eds.) Topley and Wilson's Principles
Results of intratracheal injection of the Bordet-Gengou bacillus
in the monkey and rabbit.

A simple chemically defined medium for the production of Phase I
Bordetella pertussis.

The stability of bacterial vaccines at elevated temperatures.
Dev. Biol. Stand. 41, 249-253.

Experimental pertussis infection in the marmoset: Type specificity
of active immunity.
J. Hyg. (Camb.) 72, 213-228.

Standfast, A.F.B. (1951a).
The virulence of Haemophilus pertussis for mice by intranasal route.

Standfast, A.F.B. (1951b).
The phase I of Haemophilus pertussis.
J. Gen. Microbiol. 5, 531-545.

Some factors influencing the virulence for mice of Bordetella
pertussis by the intracerebral route.
Immunolgy 1, 123-134.

Stetler, H.C., Mullen, J.R., Brennan, J.P., Orenstein, W.A., Bart, K.J.
Adverse events following immunization with DTP vaccine.
Dev. Biol. Stand. 61, 411-421.

Vaccination against whooping cough. Efficacy versus risks.
Lancet 1, 234-237.
Whooping cough and pertussis vaccine: A comparison of risks and benefits in Britain during the period 1968-83.
Dev. Biol. Stand. 61, 395-405.

Removal of lipopolysaccharide from acellular Bordetella pertussis vaccine by detergent treatment.

Benefits and risks of immunization against pertussis.
Dev. Biol. Stand. 43, 75-83.

Effect of Bordetella pertussis leucocytosis (lymphocytosis) promoting factor (LPF) on the physical lymphoepithelial-cell association studied with the use of an in vitro model of mouse thymus.
J. Immunol. 130, 2767-2774.

The adjuvant effect of pertussis endotoxin protein in modulating the immune response to cholera toxoid in mice.
Dev. Biol. Stand. 61, 225-232.

The protective activity of component of Bordetella pertussis cell walls.
Immunology 12, 246-254.

Effect of reptaxis (1,6-O-Dimethyl) Beta-cyclodextrin on cell growth and production of pertussis toxin of Bordetella pertussis Phase I.
J. Pharmacocoi-Dyn. 8, S-39.

Studies on the haemagglutinin of Haemophilus pertussis.
J. Immunol. 65, 627-632.

Optimization of immunization schedule to standardize antibody
response in mice to pertussis vaccines.
Dev. Biol. Stand. 61, 469-475.

The phases or types of H. pertussis.
J. Infect. Dis. 57, 49-56.

H. pertussis on chocolate brown agar.

Whooping cough - aspects of pathogenesis and treatment.

Trollfors, B. (1986).
Acellular pertussis vaccine. In: Proceedings of Symposium on Progress
in Vaccinology held at National Institute of Immunology, New Delhi.
1-5 December, 1986. Berlin: Springer-Verlag, IN PRESS.

Filamentous hemagglutinin and pertussis toxin promote adherence of
Bordetella pertussis to cilia.
Dev. Biol. Stand. 61, 197-204.

Characterization of two adhesins of Bordetella pertussis for human
ciliated respiratory epithelial cells.
J. Infect. Dis. 152, 118-125.

Islet activating protein, pertussis toxin: Subunit structure and
mechanism for its multiple biological actions. In: Sakura, R.D.,
Moss, J. and Vaughan, M. (eds.) Pertussis Toxin. Orlando: Academic
Press, pp. 19-43.
Ungar, J. (1949).

Agglutination of red blood corpuscles by *B. pertussis*.
J. Pathol. Bacteriol. 61, 140-141.

United States Requirements for Pertussis Vaccine (1983).

Involvement of filamentous hemagglutinin in the adherence of *Bordetella pertussis* to human WiDr cell cultures.
Dev. Biol. Stand. 61, 205-214.

Preparation of soluble pertussis vaccine.
Nature (London) 203, 774-775.

Toxicity control of pertussis vaccines by the mouse weight-gain test.
Prog. Immunobiol. Stand. 3, 324-326.

Some remarks about potency and toxicity of pertussis vaccines.
Symp. Series Immunobiol. Stand. 13, 73-75.

An antigen-conserving ELISA for detecting human antibodies to *Bordetella pertussis* filamentous hemagglutinin.
J. Biol. Stand. 14, 157-161.

A simplified liquid culture medium for the growth of *Haemophilus pertussis*.
J. Bacteriol. 58, 127-134.
A live vaccine against pertussis.
Dev. Biol. Stand. 61, 517-524.

Pertussis toxin inhibits f Mer-Leu-Phe but not phorbol ester-stimulated changes in rabbit neutrophils: Role of G protein in excitation response coupling.

Loss of protective antigen, histamine sensitizing factor and envelope polypeptides in cultural variants of Bordetella pertussis.
J. Med. Microbiol. 9, 89-100.

Loss of adjuvanticity in rats for the hyperacute form of allergic encephalomyelitis and for reaginic antibody production in mice of a phenotypic variant of Bordetella pertussis.
Immunology 37, 539-545.

Bordetella pertussis toxins.
Pharma. Ther. 19, 1-53.

Abrogation of resistance to the reinduction of experimental allergic encephalomyelitis by pertussigen.
Cellular Immunol. 72, 375-383.

Genetic studies of the molecular basis of whooping cough.
Dev. Biol. Stand. 61, 11-19.

Manual for the production and control of vaccines - Pertussis Vaccine.
BLG/UNDP/77.3 Rev. 1 (Unpublished working document).

Meeting on the results of the WHO Collaborative study on the acellular DPT Vaccine.
WHO/BVI/PERT./84.1 (Unpublished working document).

WHO Collaborative study on the FHA and LPF components of acellular pertussis vaccine.
WHO/BS/85.1467 (Unpublished working document).

Extracted pertussis antigen.

Winholt, N. (1915).
Complement-fixation in whooping cough.

Immunomodulation of Bordetella pertussis, antiviral effects.
Dev. Biol. Stand. 61. 233-240.

Production of hemorrhagic necrotic skin lesions in the rabbits by means of Hemophilus influenzae and Hemophilus pertussis.
J. Exp. Med. 65, 43-57.

Calmodulin activates prokaryotic adenylate cyclase.

A table determining LD_{50} or 50 percent end point.

Islets-activating protein (IAP) in Bordetella pertussis that potentiates insulin secretory responses of rats. Purification and characterization.

Studies on the protection test of pertussis vaccine III. Influences of heat and formalin on the vaccine preparation.

Purification of serotype 2 fimbriae of Bordetella pertussis and their identification as a mouse protective antigen.
Dev. Biol. Stand. 61, 173-185.