TABLE OF CONTENTS

Acknowledgements

Table of contents

CHAPTER 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Ferroelectric materials</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Magnetic materials (Ferrite)</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Multiferroic materials</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Magnetoelectric (ME) effect</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Multiferroic magnetoelectric (ME) materials</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Classification of multiferroic magnetoelectric (ME) materials</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1 Single phase multiferroic ME materials</td>
<td>8</td>
</tr>
<tr>
<td>1.7.2 Multiferroic magnetoelectric (ME) composites</td>
<td>9</td>
</tr>
<tr>
<td>1.7.2.1 Particulate composites</td>
<td>11</td>
</tr>
<tr>
<td>1.7.2.2 Laminate composites</td>
<td>12</td>
</tr>
<tr>
<td>1.7.2.3 Nanostructured composite thin films</td>
<td>13</td>
</tr>
<tr>
<td>1.8 Applications of multiferroic magnetoelectric (ME) materials</td>
<td>14</td>
</tr>
<tr>
<td>1.8.1 Particulate composites</td>
<td>14</td>
</tr>
<tr>
<td>1.8.2 ME current sensors</td>
<td>15</td>
</tr>
<tr>
<td>1.8.3 Transformers and gyrators</td>
<td>15</td>
</tr>
<tr>
<td>1.8.4 Microwave devices</td>
<td>16</td>
</tr>
<tr>
<td>1.8.5 Memory devices</td>
<td>17</td>
</tr>
<tr>
<td>1.9 Multiferroic magnetoelectric particulate composites</td>
<td>18</td>
</tr>
<tr>
<td>1.9.1 Processing techniques of particulate composites</td>
<td>18</td>
</tr>
<tr>
<td>1.9.1.1 Hydrothermal method</td>
<td>18</td>
</tr>
<tr>
<td>1.9.1.2 Co-precipitation method</td>
<td>19</td>
</tr>
<tr>
<td>1.9.1.3 Conventional solid state method</td>
<td>20</td>
</tr>
<tr>
<td>1.9.1.4 Chemical solution technique</td>
<td>21</td>
</tr>
<tr>
<td>1.9.2 (Pb$_{1-a}$Ca$_a$)TiO$_3$ - CoFe$_2$O$_4$ and substituted multiferroic magnetoelectric particulate composites</td>
<td>22</td>
</tr>
<tr>
<td>1.9.3 General objectives of the present research work</td>
<td>26</td>
</tr>
<tr>
<td>1.9.4 Outlines of the thesis</td>
<td>29</td>
</tr>
</tbody>
</table>

References

vi
CHAPTER 2
Experimental Techniques 40-74

2.1 Introduction 40

2.2 Synthesis of Chemical Precursors 41

2.2.1 Synthesis of Lead 2-ethyl Hexanoate (C_{7}H_{15}COO)_{2}Pb 42

2.2.2 Synthesis of Calcium 2-ethyl Hexanoate (C_{7}H_{15}COO)_{2}Ca 42

2.2.3 Synthesis of Titanium Precursor 43

2.2.4 Synthesis of Cobalt 2-ethyl Hexanoate (C_{7}H_{15}COO)_{2}Co 43

2.2.5 Synthesis of Iron 3-ethyl Hexanoate (C_{7}H_{15}COO)_{2}Fe 43

2.2.6 Synthesis of Zinc 2-ethyl Hexanoate (C_{7}H_{15}COO)_{2}Zn 44

2.2.7 Synthesis of Manganese 2-ethyl Hexanoate (C_{7}H_{15}COO)_{2}Mn 44

2.3 Sample Preparation 45

2.3.1 Lead Calcium Titanate (Pb_{1-x}Ca_{x})TiO_{3} (x=0.1, 0.2, 0.3, 0.4) 45

2.3.2 Cobalt Zinc Ferrite Co_{1-x}Zn_{x}Fe_{2}O_{4} (x=0, 0.4, 0.6, 0.8) 46

2.3.3 Multiferroic Magnetoelectric Composite 46

(1-x)Pb_{0.7}Ca_{0.3}TiO_{3}-(x)CoFe_{2}O_{4} (x=0.2, 0.4, 0.6, 0.8) 46

2.3.4 Zn and Mn substituted/co-substituted (0.80)Pb_{0.7}Ca_{0.3}TiO_{3}-(0.20)CoFe_{2}O_{4} 46
Multiferroic Magnetoelectric Composites

2.4 Characterization Techniques 47

2.4.1 X-ray diffraction (XRD) 47

2.4.2 Scanning Electron Microscopy (SEM) 50

2.4.2.1 Instrumentation of SEM 50

2.4.3 Energy Dispersive X-ray Spectroscopy (EDX) 53

2.4.4 Electrical Properties 55

2.4.4.1 D.C. Resistivity 55

2.4.4.2 Dielectric Properties 57

2.4.4.3 Impedance Spectroscopy 59

2.4.5 Ferroelectric Properties (P-E Hysteresis) 62

2.4.6 Magnetic Properties 64

2.4.6.1 Diamagnetism 65

2.4.6.2 Paramagnetism 65

2.4.6.3 Ferromagnetism 65

2.4.6.4 Magnetic Hysteresis Loop 65

2.4.6.4 Vibrating Sample Magnetometer (VSM) 67

2.4.7 Magnetoelectric Properties 68

References 71

CHAPTER 3
Synthesis and characterization of Co_{1-x}Zn_{x}Fe_{2-y}Mn_{y}O_{4} & (Pb_{1-x}Ca_{x})TiO_{3} systems 75-111

3.1 Introduction 75

3.2 Structural Properties 77

3.2.1 Structural properties of Co_{1-x}Zn_{x}Fe_{2}O_{4} (x = 0, 0.4, 0.6, 0.8) 77

3.2.2 Structural properties of CoFe_{1.8}Mn_{0.2}O_{4} and Co_{0.8}Zn_{0.2}Fe_{1.8}Mn_{0.2}O_{4} ferrites 81
3.3 Microstructural properties of Co_{1-x}Zn_{x}Fe_{2}O_{4} (x = 0, 0.4, 0.6, 0.8) samples 82
3.4 Dielectric Properties 85
 3.4.1 Room temperature dielectric properties of Co_{1-x}Zn_{x}Fe_{2}O_{4} (x = 0, 0.4, 0.6, 0.8) 85
 3.4.2 Temperature dependence of dielectric properties of Co_{1-x}Zn_{x}Fe_{2}O_{4} (x = 0.4, 0.6, 0.8) 87
 3.4.3 Room temperature dielectric properties of CoFe_{1.5}Mn_{0.5}O_{4} and Co_{0.6}Zn_{0.4}Fe_{1.5}Mn_{0.5}O_{4} ferrites 90
 3.4.4 Variation of AC conductivity of Co_{1-x}Zn_{x}Fe_{2}O_{4} (x = 0.4, 0.6, 0.8) 91
3.5 Magnetic Properties 94
 3.5.1 Magnetic properties of Co_{1-x}Zn_{x}Fe_{2}O_{4} (x = 0, 0.4, 0.6, 0.8) at room temperature 94
 3.5.2 Magnetic properties of CoFe_{1.5}Mn_{0.5}O_{4} and Co_{0.6}Zn_{0.4}Fe_{1.5}Mn_{0.5}O_{4} ferrites 97
3.6 Crystalline structure of (Pb_{1-x}Ca_{x})TiO_{3} ferroelectrics 98
3.7 Conclusions 103
References 106

CHAPTER 4
Structural, microstructural and dielectric properties of (Pb_{0.7}Ca_{0.3})TiO_{3} - CoFe_{2}O_{4} particulate composites 112-163

4.1 Introduction 112
4.2 Crystalline structure of PCT-CFO particulate composites 113
 4.2.1 Crystalline structure of 0.5(PbTiO_{3})-0.5(Co_{0.5}Zn_{0.5}Fe_{2}O_{4}) particulate composite 114
 4.2.2 Crystalline structure of (1-x)Pb_{0.7}Ca_{0.3}TiO_{3}-(x)CoFe_{2}O_{4} particulate composites 115
4.3 Microstructural Properties 119
 4.3.1 Microstructural analysis of 0.5(PbTiO_{3})-0.5(Co_{0.5}Zn_{0.5}Fe_{2}O_{4}) particulate composite 119
 4.3.2 Microstructural analysis of (1-x)Pb_{0.7}Ca_{0.3}TiO_{3}-(x)CoFe_{2}O_{4} particulate composites 120
4.4 Dielectric properties 123
 4.4.1 Dielectric properties of 0.5(PbTiO_{3})-0.5(Co_{0.5}Zn_{0.5}Fe_{2}O_{4}) particulate composite 123
 4.4.2 Dielectric properties of 1-x(Pb_{0.7}Ca_{0.3})TiO_{3} - x(CoFe_{2}O_{4}) with x = 0.2, 0.4, 0.6 and 0.8 magnetoelectric particulate composites 126
4.5 Impedance Spectroscopy 132
 4.5.1 Impedance analysis of 1-x(Pb_{0.7}Ca_{0.3})TiO_{3} - x(CoFe_{2}O_{4}) particulate composites 133
4.6 Conclusions 155
References 159

CHAPTER 5
Multiferroic and magnetoelectric properties of 1-x(Pb_{0.7}Ca_{0.3})TiO_{3} - x(CoFe_{2}O_{4}) particulate composites 164-183

5.1 Introduction 164
5.2 Magnetic Properties 166
 5.2.1 Magnetic properties of 0.5(PbTiO_{3})-0.5(Co_{0.5}Zn_{0.5}Fe_{2}O_{4}) 166

iv
CHAPTER 6
Structural, dielectric, multiferroic and magnetoelectric properties of 0.80(Pb0.7Ca0.3)TiO3 - 0.20(Co1-xZnxFe2-yMnyO4) particulate composites

6.1 Introduction
6.2 Crystalline structure of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) particulate composites
6.3 Microstructural analysis of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) particulate composites
6.4 Dielectric properties of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) [x = 0.4, y = 0, x = 0, y = 0.2 and x = 0.4, y = 0.2] particulate composites
6.5 Impedance analysis of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) [x = 0.4, y = 0; x = 0, y = 0.2 and x = 0.4, y = 0.2] particulate composites
6.6 Magnetic properties of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) [x = 0.4, y = 0; x = 0, y = 0.2 and x = 0.4, y = 0.2] particulate composites
6.7 DC resistivity of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) [x = 0.4, y = 0; x = 0, y = 0.2 and x = 0.4, y = 0.2] particulate composites
6.8 Ferroelectric properties of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) [x = 0.4, y = 0; x = 0, y = 0.2 and x = 0.4, y = 0.2] particulate composites
6.9 Magnetoelectric properties of 0.8(Pb0.7Ca0.3)TiO3-0.2(Co1-xZnxFe2-yMnyO4) [x = 0.4, y = 0; x = 0, y = 0.2 and x = 0.4, y = 0.2] particulate composites
6.10 Conclusions
References

CHAPTER 7
Conclusions
Suggestion for future work