List of Tables:-

4.3 Specifications

4.7 Engine specifications

List of Figures:-

1.1 Inflammability limit of methane in mixtures of oxygen with Nitrogen.

3.1 Simulated results of a typical NSR cycle in a current work.

(a) Lean Phase (b) RichPhase

4.1 This schematic shows a water brake, which is actually a fluid coupling with a housing restrained from rotating - similar to a water pump with no outlet.

4.2 Cross Sectional schematic of a Carburetor

4.3 Carburettor and its major parts

4.4 Spark plug

4.5 Single cylinder Kirlosker diesel engine

4.6 Arrangement of ignition coil and magnet on the diesel engine

4.7 Modified Piston

4.8 Cylinder Head
4.9 Block diagram of the Experimental set up

5.1 Comparison of Brake thermal efficiency for the two configurations of the optimized design.

5.2 Comparison of HC Emissions for the two configurations of the optimized design.

5.3 Comparison of CO Emissions for the two configurations of the optimized design.

5.4 Comparison of Cylinder Peak Pressure for the two configurations of the optimized design.

5.5 Comparison of Ignition Delay for the two configurations of the optimized design.

5.6 Comparison of Combustion Duration for the two configurations of the optimized design.

5.7 Brake thermal efficiency of the optimized design with three configuration fuels at 1000 rpm.

5.8 HC Emissions of the optimized design with three configuration fuels at 1000 rpm.

5.9 CO Emissions of the optimized design with three configuration fuels at 1000 rpm.

5.10 Brake thermal efficiency of the optimized design with three configuration fuels at 1000 rpm.
fuels at 1000 rpm

5.11 HC Emissions of the optimized design with different fuels at 1500 rpm

5.12 CO Emissions of the optimized design with different fuels at 1500 rpm

5.13 Cylinder peak pressure of the optimized design with three configuration fuels at 1000 rpm

5.14 Ignition Delay of the optimized design with three configuration fuels at 1000 rpm

5.15 Combustion Duration of the optimized design with three configuration fuels at 1000 rpm

5.16 Cylinder peak Pressure of the optimized design with three configuration fuels at 1500 rpm

5.17 Ignition Delay of the optimized design with three configuration fuels at 1500 rpm

5.18 Combustion Duration of the optimized design with three configuration fuels at 1500 rpm

6.1 Velocity errors for different pressure errors at different crank angles.

TDC is at 720°

6.2 Estimated cylinder pressure, measured pressure and estimation error for a high pressure condition with parameters a = 5, m = 2. And θ0 = 705°
6.3 Estimated cylinder pressure. Measured pressure and estimation error for a low pressure condition with parameters with $a = 5$, $m = 2$ and $\theta_0 = 705^\circ$

6.4 Estimated cylinder pressure. Measured pressure and estimation error for a low pressure condition with parameters with $a = 3$, $m = 2$. And $\theta_0 = 705^\circ$

6.5 Weibe function of mass fraction burned and its rate varying efficiency parameter a

6.6 Weibe function for mass fraction burned and its rate with varying form factor m

6.7 Estimated cylinder pressure, measured pressure and estimation error for a high pressure condition with parameters $a=10$, $m=3$ and $\theta_0=705^\circ$

6.8 Cylinder mass fraction burned for five consecutive cycles.

6.9 Estimated cylinder pressure, Measured pressure and estimation error for a low pressure condition with parameters $a = 8$, $m = 2$. and $\theta_0 = 712^\circ$.

6.10 Estimated cylinder pressure and measured pressure of a misfired cylinder with parameters $a = 5$, $m = 2$, and $\theta_0 = 705^\circ$.

6.11 Estimation of combustion heat release rate and released rate of misfired engine combustion

6.12 Estimation combustion release rate of late burning

6.13 Estimation of combustion heat release and release rate of pre-ignition combustion.

6.14 Histograms of cyclic pressure peaks p_{max} and the corresponding
angles $\alpha_{p_{\text{max}}}$ (SA = $\Delta\alpha_z = 5^\circ, 15^\circ, 30^\circ$)

6.15 Schematic diagram of the coarse-graining procedure used in the calculation of multi scale sample entropy.

6.16 Sample entropy SE calculated for normalized time series