TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iv</td>
<td>ACKNOWLEDGEMENT</td>
<td></td>
</tr>
<tr>
<td>Vi</td>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>Xiii</td>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>Xvi</td>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>Xvii</td>
<td>LIST OF PHOTOGRAPHS</td>
<td></td>
</tr>
<tr>
<td>Xviii</td>
<td>LIST OF ABBREVIATIONS AND NOTATIONS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION AND REVIEW OF THE LITERATURE</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>MODELING TECHNIQUES FOR METAL CUTTING PROCESS</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>ARTIFICIAL NEURAL NETWORK</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>FUZZY LOGIC CONTROLLER</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>MANUFACTURING OF NON-LINEAR METAL CUTTING PROCESS</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>MOTIVATION</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>SCOPE AND OBJECTIVES OF RESEARCH WORK</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>ORGANISATION OF THESIS</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>REVIEW OF THE LITERATURE</td>
<td>13</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Previous Research</td>
<td>14</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Tuning of Control System Parameters</td>
<td>16</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Current Research</td>
<td>19</td>
</tr>
</tbody>
</table>
2 DEPICTION OF TOOL WEAR MECHANISM AND MODELING OF THE NON-LINEAR FLANK WEAR MODEL

2.1 INTRODUCTION

2.1.1 Causes of Tool Wear

2.1.2 Mechanisms of Tool Wear

2.2 TOOL FAILURE

2.2.1 Face Wear

2.2.2 Flank Wear

2.2.3 Nose Wear

2.3 TOOL LIFE

2.4 ECONOMICS OF METAL CUTTING OPERATIONS

2.5 MODELING OF THE FLANK WEAR MODEL

2.5.1 CONDUCTING TESTS ON METAL CUTTING PROCESS OF FLANK WEAR

2.5.1.1 Modeling

2.6 THE NON-LINEAR FLANK WEAR MODEL

2.6.1 Output Variable

3 CONVENTIONAL CONTROLLER

3.1 INTRODUCTION

3.2 PROPORTIONAL + INTEGRAL CONTROLLER

3.3 DESIGN OF PI CONTROLLER USING SYNTHESIS METHOD

3.3.1 Control Loop Tuning

3.4 DEVELOPMENT OF PI CONTROLLER
4 TUNING OF PID CONTROLLER USING ANN AND FLC FOR NON-LINEAR FLANK WEAR SYSTEMS

4.1 INTRODUCTION

4.2 ARTIFICIAL NEURAL NETWORK

4.2.1 Learning scheme

4.2.1.1 Application procedure of the algorithm

4.3 DESIGN OF NEURO CONTROLLER

4.4 FUZZY LOGIC CONTROLLER

4.4.1 Structure of FKBC

4.4.1.1 Crisp set

4.4.1.2 Fuzzification

4.4.1.3 Knowledge Base

4.4.1.4 Rule Base

4.4.1.5 Inference Mechanism

4.4.1.6 Defuzzification

4.4.2 Design of Fuzzy Logic Controller

4.4.2.1 PI Controller

4.4.2.2 Fuzzy Membership Function

4.4.2.2.1 Triangular membership function

4.4.2.2.2 Rule table for triangular membership function
5 PERFORMANCE EVALUATION OF CONTROLLER APPROACHES FOR NON-LINEAR FLANK WEAR SYSTEM

5.1 INTRODUCTION
5.2 PI CONTROLLER
5.3 FUZZY CONTROL
 5.3.1 Identification of Inputs and Output
 5.3.2 Fuzzification of Inputs and Output
 5.3.3 Rule Base and Inference Mechanism
 5.3.4 Defuzzification
5.4 NEURO-PID CONTROLLER
5.5 SIMULATION RESULTS
 5.5.1 ANN Based On Self-Tuning of PID Controller
 5.5.2 Fuzzy Controller
 5.5.2 The dynamic models developed are used for Evaluation of performance analysis for flank wear model

6 SUMMARY AND CONCLUSION
6.1 PATH FOR FURTHER RESEARCH WORK
PUBLICATIONS & CONFERENCES OF AUTHOR’S REFERENCES