CONTENTS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>DECLARATION</td>
</tr>
<tr>
<td>(ii)</td>
<td>CERTIFICATE</td>
</tr>
<tr>
<td>(iii)</td>
<td>ACKNOWLEDGEMENT</td>
</tr>
<tr>
<td>(vi)</td>
<td>ABSTRACT</td>
</tr>
<tr>
<td>(viii)</td>
<td>LIST OF CONTENTS</td>
</tr>
<tr>
<td>(xi)</td>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>(xvi)</td>
<td>LIST OF FIGURES</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 GENERAL
1.2 NEED FOR THE PRESENT STUDY
1.3 OBJECTIVES OF THE PRESENT STUDY
1.4 ORGANIZATION OF THE THESIS

CHAPTER 2 REVIEW OF LITERATURE

2.1 GENERAL
2.2 SISAL FIBRE CHARACTERISTICS
2.2.1 CLASSIFICATION
2.2.2 PRODUCTION AND USES
2.2.3 SIZE, STRUCTURE, CHEMICAL COMPOSITION AND PROPERTIES
2.2.4 DECOMPOSITION OF SISAL FIBRE IN ALKALINE ENVIRONMENT
2.3 STUDIES ON WORKABILITY OF CEMENT / CEMENTITIOUS SYSTEMS AND COMPOSITES
2.3.1 WORKABILITY – DEFINATION
2.3.2 REVIEW OF EARLIER WORKS
2.3.1 STUDIES ON CEMENT MORTAR COMPOSITES
2.4 RHEOLOGICAL STUDIES ON CEMENT / CEMENTITIOUS SYSTEMS
2.4.1 RHEOLOGY – DEFINATION
2.4.2 STUDY OF RHEOLOGY – BACKGROUND INFORMATION
2.4.3 RHEOLOGY Vs WORKABILITY
2.4.4 REVIEW OF RHEOLOGICAL STUDIES
2.5 STUDIES ON NATURAL FIBRE COMPOSITES
2.5.1 SETTING CHARACTERISTICS
2.5.2 RHEOLOGICAL / WORKABILITY CHARACTERISTICS
2.5.3 STRENGTH CHARACTERISTICS
2.5.4 DURABILITY OF FIBRES AND COMPOSITES
2.5.5 PRODUCTS BASED ON NATURAL FIBRES
2.5.6 MISCELLANEOUS STUDIES / REVIEW WORKS
2.6 STUDIES ON TOUGHNESS OF COMPOSITES 107
 2.6.1 TOUGHNESS – DEFINITION
 2.6.2 IMPORTANCE OF TOUGHNESS MEASUREMENT
 2.6.3 MEASUREMENT OF TOUGHNESS
 2.6.4 IMPORTANCE OF FLEXURAL TOUGHNESS FOR NATURAL FIBRE COMPOSITES
 2.6.5 OVERVIEW OF STUDIES

2.7 CONCLUDING REMARKS 118

CHAPTER 3 EXPERIMENTAL INVESTIGATIONS

3.1 GENERAL 119

3.2 MATERIAL CHARACTERIZATION: BINDERS, AGGREGATES & WATER
 3.2.1 CEMENT
 3.2.2 FLYASH
 3.2.3 FINE AGGREGATE
 3.2.4 WATER

3.3 SELECTION & PRELIMINARY INVESTIGATIONS ON NATURAL FIBRES 127
 3.3.1 SELECTION OF NATURAL FIBRES
 3.3.2 PHYSICAL PROPERTIES OF NATURAL FIBRES
 3.3.3 CHEMICAL COMPOSITION OF NATURAL FIBRES
 3.3.4 DURABILITY OF NATURAL FIBRES - RELATIVE PERFORMANCE

3.4 EXPERIMENTAL INVESTIGATIONS ON SISAL FIBRE CEMENTITIOUS COMPOSITES 142
 3.4.1 DIMENSIONAL STABILITY
 3.4.2 WORKABILITY CHARACTERISTICS
 3.4.3 RHEOLOGICAL CHARACTERISTICS
 3.4.4 STRENGTH CHARACTERISTICS
 3.4.5 STRENGTH CHARACTERISTICS OF MORTAR SLAB
 3.4.6 DURABILITY OF SISAL FIBRE CEMENTITIOUS COMPOSITES

3.5 SISAL FIBRE REINFORCED CORRUGATED SHEETS 151
 3.5.1 EXPERIMENTAL PROCEDURE

3.6 SUMMARY 155

CHAPTER 4 RESULTS AND DISCUSSION

4.1 GENERAL 197

4.2 RESULTS AND DISCUSSION 197
 4.2.1 PROPERTIES OF SISAL FIBRES
 4.2.2 DIMENSIONAL STABILITY
4.2.3 WORKABILITY OF SISAL FIBRE COMPOSITES
4.2.4 RHEOLOGY OF SISAL FIBRE COMPOSITES
4.2.5 COMPRESSIVE STRENGTH OF MORTAR COMPOSITES
4.2.6 FLEXURAL STRENGTH OF MORTAR COMPOSITES
4.2.7 SPLIT- TENSILE STRENGTH OF MORTAR COMPOSITES
4.2.8 IMPACT STRENGTH OF SLABS: MORTAR AND COMPOSITE
4.2.9 FLEXURAL STRENGTH OF SLABS: MORTAR AND COMPOSITE (BY FOUR-POINT LOADING METHOD)
4.2.10 DURABILITY OF SISAL FIBRE MORTAR: COMPOSITE SLABS
4.2.11 SISAL FIBRE CORRUGATED ROOFING SHEETS

4.3 SUMMARY 233

CHAPTER 5 CONCLUSIONS

5.1 GENERAL 309
5.2 CONCLUSIONS 309
5.3 RECOMMENDATIONS 316
5.4 SUMMARY 316

REFERENCES 317
APPENDIX – A 353
APPENDIX – B 359
APPENDIX – C 364